自2012年來,荷蘭政府鼓勵荷蘭科學研究機構(Netherlands Organization for Scientific Research, NWO) 隸屬教育文化科學部(Ministry of Education, Culture and Science, OCW)積極推動與9大重要領域(Top Sectors)與企業相關研究的合作,NWO同時是政策實施機構也是創新研發機構。OCW每年資助約275億歐元在重要領域,其中有超過100億歐元在協助公私協力機制 ( Public-Private Partnerships, PPP)。近年來,OCW增加編列給NWO的預算,2014年增加2千5百萬歐元;2015-2017年增加7千5百萬歐元;2018年預計增加1億歐元。PPP 參與者為研究機構(例如大學機構、公私立研究機構)及民間企業(國內國外企業皆可)。主要規範依據NWO-Framework for Public-Private Partnership,合作後以聯盟(consortium)形式運作,聯盟成員間可以契約個別約定合作內容,但相關權利義務仍須遵循NWO-Framework for Public-Private Partnership。關於既有智慧財產權之使用方式,聯盟成員間須另外約定非無償使用。為實現該聯盟之研發目的, NWO為主要出資者時,可成為該研發成果之所有人或共有人,待研發成果運用及收益可以獲得妥善安排時,得將研發成果轉讓予能將研發成果運用效益最大化之人。原則上,參與PPP的企業並不當然有優先權可將該研究成果運用於商業用途,除非參與企業出資額幾乎達到整個研發支出的百分之百,且已簽訂研發成果書面授權或轉讓契約後,始能將該研發成果運用於商業用途。
本文為「經濟部產業技術司科技專案成果」
「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
歐盟《醫藥品包裹》修法草案將使用市場保護機制鼓勵藥品創新、提升藥品可及性歐盟執委會(European Commission)於2023年提出《醫藥品包裹》(Pharmaceutical Package)修訂多項歐盟藥品法規。其中也調整資料保護期(period of data protection)和市場獨占期(market exclusivity)等制度,激勵藥品創新、增加藥品可及性、並強化歐盟面對全球公衛挑戰的能力。修訂草案由環境、公共衛生與食品安全委員會(Committee on Environment, Public Health and Food Safety)通過後,目前已於2024年4月由歐洲議會(European Parliament)投票一讀通過,若歐洲理事會決議通過,即完成修法。為協助產業界提早因應布局,本文擬介紹歐洲議會一讀通過的草案中,資料保護期與市場獨占期的運作方式。 一般新藥 一般新藥的資料保護期由現行的8年縮減至7年半。但符合以下條件時,則能將資料保護期延長:滿足未滿足醫療需求(12個月);含有新活性物質並進行比較性臨床試驗(6個月);於歐盟境內與歐盟研究實體合作開發(6個月),若同時符合多項條件時,最多可將資料保護期延長1年。此外,新藥與現有療法相比具有顯著的臨床優勢時,還能將資料保護期結束後的市場獨占期由2年延至3年,但僅限一次。 針對抗藥性微生物抗生素 引入資料專屬期券(Data Exclusivity Voucher),獲授權的產品最多可將資料保護期延長12個月,該權利能轉讓給其他醫藥產品,但轉讓僅限一次。 孤兒藥 一般孤兒藥的市場獨占期由現行的10年縮減至9年,然而滿足「高度未滿足醫療需求」的罕病孤兒藥最長可享有11年的市場獨占期。但在非額外的市場獨占期剩餘2年以內時,不得阻擋學名藥與生物相似藥之上市申請。 本次修法加速一般的學名藥與生物相似藥進入市場,但同時也加強高品質與創新藥品的保護進行支持;而對於市場機制未能激勵投入的重要需求,如新型抗生素,則提供具可轉讓性的額外獎勵,增添靈活度和價值,以吸引更多企業投入研發。 本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw )
英國NCSC針對使用高風險供應商之電信網路提出風險管理建議英國於2020年1月31日正式脫歐,同時積極爭取與重要貿易夥伴美國簽訂自由貿易協定(Free Trade Agreement, FTA)。然而,美國認定中國大陸華為的5G設備存在資安風險,可能被用於間諜活動進而威脅國家安全,故主張美英貿易合作與情報共享的前提,必須建立在英國排除使用華為5G網路基礎建設之上,對此英國嘗試透過政策研擬,在5G經濟發展與國家安全間求取平衡。英國國家網路安全中心(National Cyber Security Centre, NCSC)於2020年1月28日,即針對使用「高風險供應商(High risk vendors簡稱HRV)」之電信網路,提出風險管理建議,說明如何因應HRV帶來的網路安全風險及挑戰(須注意高風險供應商HRV不一定是關鍵供應商Critical Vendor,必須透過關鍵與否及風險高低兩個變動因素加以細部區分)。目前英國5G及光纖到戶(Fiber To The Home, FTTH)計畫推動處於關鍵階段,NCSC向電信營運商提出有關使用HRV設備的非拘束性技術建議,將有助於保護營運商免於外部攻擊,並降低英國電信網路的國家安全風險。 NCSC在報告中,針對何謂高風險供應商,及如何管理這些供應商帶來的特定安全風險,提出詳盡判斷標準包括:供應商在英國及其他地區網路中的戰略地位及規模、對網路安全控管品質及透明度、過去商業行為及慣例、向英國營運商供應技術的穩定性及彈性等。另外供應商有無接受外國政府補貼及營業地點是考量重點:包括該廠商所屬國家政府機構對其施加影響之程度、是否具備攻擊英國網路能力、業務營運的重要組成部分是否受到本國法律監管,進而與英國法律相抵觸甚至進行外部指導等。 又為減少由HRV引起的網路安全風險,NCSC對於HRV控管提出具體建議。包括應限制在5G或FTTP網路核心功能中使用HRV產品及服務,並將高風險廠商供應上限設定為35%,有效進行網路安全風險管理,平衡安全性風險和市場供應多樣化彈性需求。另外,其他具備敏感性的網路營運模式,例如大量個資蒐集、語音系統、記錄備份系統、寬頻遠端接入系統(BNG / BRAS)等,必須根據具體情況,對HRV進行限制;且不得在與政府營運或重要國家基礎設施,及任何與安全系統直接相關的敏感網路中使用HRV設備。目前,中國大陸華為是英國NCSC唯一認定的HRV廠商,華為被禁止參與英國5G網路建設的核心部分且受有市占率35%的供應限制;華為亦需遵守NCSC要求,訂定風險緩解策略,確保產品及服務不致威脅英國網路即國家安全。
德國資料保護會議通過「哈姆巴爾宣言」,針對人工智慧之運用提出七大個資保護要求德國聯邦及各邦獨立資料保護監督機關(unabhängige Datenschutzaufsichtsbehörden)共同於2019年4月3日,召開第97屆資料保護會議通過哈姆巴爾宣言(Hambacher Erklärung,以下簡稱「Hambacher宣言」)。該宣言指出人工智慧雖然為人類帶來福祉,但同時對法律秩序內自由及民主體制造成巨大的威脅,特別是人工智慧系統可以透過自主學習不斷蒐集、處理與利用大量個人資料,並且透過自動化的演算系統,干預個人的權利與自由。 諸如人工智慧系統被運用於判讀應徵者履歷,其篩選結果給予女性較不利的評價時,則暴露出人工智慧處理大量資料時所產生的性別歧視,且該歧視結果無法藉由修正資料予以去除,否則將無法呈現原始資料之真實性。由於保護人民基本權利屬於國家之重要任務,國家有義務使人工智慧的發展與應用,符合民主法治國之制度框架。Hambacher宣言認為透過人工智慧系統運用個人資料時,應符合歐盟一般資料保護規則(The General Data Protection Regulation,以下簡稱GDPR)第5條個人資料蒐集、處理與利用之原則,並基於該原則針對人工智慧提出以下七點個資保護之要求: (1)人工智慧不應使個人成為客體:依據德國基本法第1條第1項人性尊嚴之保障,資料主體得不受自動化利用後所做成,具有法律效果或類似重大不利影響之決策拘束。 (2)人工智慧應符合目的限制原則:透過人工智慧系統蒐集、處理與利用個人資料時,即使後續擴張利用亦應與原始目的具有一致性。 (3)人工智慧運用處理須透明、易於理解及具有可解釋性:人工智慧在蒐集、處理與利用個人資料時,其過程應保持透明且決策結果易於理解及可解釋,以利於追溯及識別決策流程與結果。 (4)人工智慧應避免產生歧視結果:人工智慧應避免蒐集資料不足或錯誤資料等原因,而產生具有歧視性之決策結果,控管者或處理者使用人工智慧前,應評估對人的權利或自由之風險並控管之。 (5)應遵循資料最少蒐集原則:人工智慧系統通常會蒐集大量資料,蒐集或處理個人資料應於必要範圍內為之,且不得逾越特定目的之必要範圍,並應檢查個人資料是否完全匿名化。 (6)人工智慧須設置問責機關進行監督:依據GDPR第12條、第32條及第35條規定,人工智慧系統內的控管者或處理者應識別風險、溝通責任及採取必要防範措施,以確保蒐集、處理與利用個人資料之安全性。 (7)人工智慧應採取適當技術與組織上的措施管理之:為了符合GDPR第24條及第25條規定,聯邦資料保護監督機關應確認,控管者或處理者採用適當的現有技術及組織措施予以保障個人資料。 綜上所述,Hambacher宣言內容旨在要求,人工智慧在蒐集、處理及利用個人資料時,除遵守歐盟一般資料保護規則之規範外,亦應遵守上述提出之七點原則,以避免其運用結果干預資料主體之基本權利。