自2012年來,荷蘭政府鼓勵荷蘭科學研究機構(Netherlands Organization for Scientific Research, NWO) 隸屬教育文化科學部(Ministry of Education, Culture and Science, OCW)積極推動與9大重要領域(Top Sectors)與企業相關研究的合作,NWO同時是政策實施機構也是創新研發機構。OCW每年資助約275億歐元在重要領域,其中有超過100億歐元在協助公私協力機制 ( Public-Private Partnerships, PPP)。近年來,OCW增加編列給NWO的預算,2014年增加2千5百萬歐元;2015-2017年增加7千5百萬歐元;2018年預計增加1億歐元。PPP 參與者為研究機構(例如大學機構、公私立研究機構)及民間企業(國內國外企業皆可)。主要規範依據NWO-Framework for Public-Private Partnership,合作後以聯盟(consortium)形式運作,聯盟成員間可以契約個別約定合作內容,但相關權利義務仍須遵循NWO-Framework for Public-Private Partnership。關於既有智慧財產權之使用方式,聯盟成員間須另外約定非無償使用。為實現該聯盟之研發目的, NWO為主要出資者時,可成為該研發成果之所有人或共有人,待研發成果運用及收益可以獲得妥善安排時,得將研發成果轉讓予能將研發成果運用效益最大化之人。原則上,參與PPP的企業並不當然有優先權可將該研究成果運用於商業用途,除非參與企業出資額幾乎達到整個研發支出的百分之百,且已簽訂研發成果書面授權或轉讓契約後,始能將該研發成果運用於商業用途。
本文為「經濟部產業技術司科技專案成果」
德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
歐盟執委會發布2020歐洲創新計分板報告歐盟執委會(European Commission, EC)於2020年6月23日發布2020歐洲創新計分板報告(European Innovation Scoreboard 2020, EIS),其以「整體結構條件」(Framework conditions)、「投資」、「創新活動」和「影響力」(Impacts)四大指標評比歐盟成員國以及其他歐洲國家的研究與創新績效、創新環境等;各指標下再細分為10個次標和27個子標,例如人力資源、友善創新環境建構、政府部門研發創新支出、企業專業職能訓練、專利與商標申請、高科技產品出口等。 歐洲計分板將歐盟會員國創新表現分為四組,以2020年綜合創新能力分別為:(1)創新領導者(Innovation Leaders):包含丹麥、芬蘭、荷蘭、瑞典等國,為創新表現大於歐盟成員國平均創新度20%以上者;(2)優秀創新者(Strong Innovators):包含奧地利、比利時、法國、德國、葡萄牙等,創新表現大於歐盟成員國平均者;(3)中等創新者(Moderate Innovators):包含希臘、匈牙利、義大利、西班牙、波蘭等國,其創新表現小於歐盟平均者;以及最後一組(4)適度創新者(Modest Innovators):包含羅馬尼亞及保加利亞,為創新表現低於歐盟平均之50%。 此外,在各特定領域上,該報告亦有對不同國家進行排名。例如在創新研究體系領域,表現最好者為盧森堡、丹麥、荷蘭;中小企業帶領創新則以葡萄牙和芬蘭表現最佳;創新協力合作(Innovation linkages and collaboration)以奧地利、比利時、芬蘭最佳。而在全球綜合創新表現上,南韓為創新表現最佳,其向加入專利合作條約(Patent Cooperation Treaty, PCT)國家提交之專利申請數、商標申請數、設計專利申請數量最多,分別為世界其他先進國家的2-10倍不等(申請數量以每十億GDP為一單位計算);其次是加拿大、澳洲、日本、歐盟、美國與中國。歐盟已是第二年超越美國,並在其他主要競爭者中(美國、中國、巴西、俄羅斯、南非等)保持優先,唯優勢差距開始減少。此外,EIS跨年度分析評比,是以歐盟2012年創新表現為基準。報告中將歐盟2012年之創新表現預設為100,在2012-2019年間,中國的創新表現評分自79成長至97,而美國則在93-99間穩定變動;特別是2019和2020兩年,美國創新表現均維持在99,而無顯著之進步。故報告預測若依此趨勢,中國創新表現將在近年超越美國。
英國資訊委員辦公室(ICO)發布沙盒執行過程中所觀察到的關鍵議題2019年9月英國資訊委員辦公室(Information Commissioner's Office, ICO)啟動沙盒計畫(ICO Sandbox)測試階段(beta phase),由ICO所選10個測試專案,透過解決當今社會問題,例如如何減少暴力犯罪、大學如何促進學生的心理健康、新技術如何改善醫療保健等,期能促進公眾利益。 各專案在滿足創新性和可行性前提下,同時也面臨著複雜的資料保護議題,因此ICO持續與各專案溝通,提供其應用現有個資保護指引之建議,如歐盟一般資料保護規則之資料保護影響評估指導文件(Guide to the GDPR - Data protection impact assessment)、資料保護自我評估工具包(Data protection self-assessment toolkit)等。自2019年3月底開始(受理申請)迄今,ICO沙盒執行過程中所觀察到的關鍵議題如下: 公部門資料應用效益:部份參與者正在克服與公部門進行歷史資料共享,或是如何整合應用大數據等。個人資料與新技術應用,必須與資料主體的權利和自由進行權衡。 同意:確保各方對於「同意」(Consent)之理解,以弭平差異,同時向公眾提供透明資訊。 新技術的挑戰:應用語音生物辨識(voice biometrics)、臉部辨識技術(facial recognition technology, FRT)等,需要在適當基礎上處理特殊類別資料。 資料分析(Data analytics):以符合資料保護的方式進行資料分析,處理特殊類別資料的適法性,評估處理過程中的風險,並檢查可能用於資料分析的資料來源,確保符合目的之應用。 未來的6個月,ICO將持續與各專案合作,使其為有效的解決方案,為公眾提供創新合規之產品與服務,並成為未來結合資料保護和創新應用之規劃藍圖,以奠定隱私保護的基石。
美國商務部、財政部以及司法部發布遵循美國出口管制與制裁規範聯合指引美國商務部(Department of Commerce)、財政部(Department of Treasury)以及司法部(Department of Justice)於2024年3月6日發布出口管制與制裁法令遵循指引,以避免邪惡政權(malign regimes)與其他不法人士試圖濫用商業與金融管道,取得有危害美國國家安全與外交政策利益、全球和平與繁榮風險的貨品、技術以及服務,特別提供「非美國公司」(non-U.S. companies),降低相關風險的遵循指引。 該指引分享3則違反制裁法規的案例,重點如下: (1)某家總部位於澳洲的國際貨運代理和物流公司,運送貨品至北韓、伊朗以及敘利亞(皆為被制裁之目的地),且透過美國金融系統發起或收受交易款項,導致美國金融機構與被制裁之對象交易,並向受制裁的司法管轄區輸出金融服務。該公司最終繳納6,131,855美元罰款。 (2)某阿聯酋公司與杜拜以及伊朗公司共謀,透過在出口文件中將一家杜拜公司錯誤地列為最終使用人,然後從一家美國公司出口「儲槽清洗裝置」(storage tank cleaning units)到伊朗,構成違反出口管制規定行為。後與主管機關達成行政和解,繳納415,695美元罰款。 (3)某家總部位於瑞典的國際金融機構的子公司,因其客戶從被制裁的司法管轄區的IP位址,使用子公司的網路銀行平台,透過美國代理銀行向位於被制裁司法管轄區的交易對象付款,因此繳納3,430,900美元罰款。