何謂「AI創作物」?

  日本智慧財產戰略本部之「次世代智財系統檢討委員會」於2016年4月18日公布的報告書針對「AI創作物」有諸多討論,截取部份內容如述。

  以現行著作權法來看,自然人創作產生的創作物,受到著作權保護並無疑問。倘若係自然人利用AI做為道具產出的創作物,若具備(1)創作意圖;(2)創作貢獻,兩種要件,亦得取得權利。然而,若該創作物僅透過人類指示,過程係由AI自主生成,此時該創作物即屬於AI創作物,目前非屬著作權法保護之範圍。惟上述三種情況在外觀辨識上極為困難。換言之,人類創作物與AI創作物之界線已愈趨模糊。

  AI創作物可能具備多種態樣,包括:音樂、小說等,甚至包括新技術及服務的生成。以音樂、小說為例,由於日本著作權法係以「創作保護主義」為前提,只要該創作物完成時具有原創性,即受著作權保護,AI的特性可能會造成該當著作權保護之著作物數量遽增;若AI產生的成果屬於技術或服務,以專利審查需具備新穎性、進步性等要件而言,得獲取專利權難度相對比較高。

  而日本政府在討論AI創作物是否具有「保護必要性」,主要係以智財權「激勵理論」出發,該理論核心在於保護人類的投資行為應獲得合理報酬,才有續行創作的動機。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「AI創作物」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7317&no=67&tp=1 (最後瀏覽日:2025/11/19)
引註此篇文章
你可能還會想看
加拿大修正專利法,於2019年正式生效

  2018年12月1日,加拿大智慧財產局公告了新專利法,並立2018年12月1日起至31日為公衆諮詢期,該法於2019年正式生效。   本次專利法修改多屬鬆綁權利人之期日限制,包括: 恢復優先權主張:在新專利法上路後,在非故意錯過了12個月的優先權期限的情況下,可允許將優先權期限延長至14個月; 更容易取得申請日:針對直接申請加拿大專利而非透過專利合作條約(Patent Cooperation Treaty,PCT)的申請案,即使尚未繳納申請費,或是相關申請文件非英文和法文,一樣可以取得申請日; 允許補交在主張優先權申請遺漏的內容; 獲核准通知後提出修改作業的程序順暢化; 採用電子送件,排序列表不會被徵收超頁費; 對特定的錯誤有更明確的修正截止日:移除因「行政作業」上疏失而提出修正請求的規定,在其他規定上增加了明確的截止日; 採PCT途徑進入國家階段已經不再有42個月的期限; 維持費用制度較為複雜,錯過實質審查期限影響也較嚴重; 如果已遞交之申請案並非英文或法文版本,那未來修改申請案必須要能自合理的從原本外語版本中合理推論而出; 需提出優先權證明文件:申請人必須向加拿大專利局遞交每一件先前申請的優先權證明文件,特殊情況下才能豁免提交; 部分申請期限變短:新專利制度縮短申請人部分申請程序及時間,例如申請實體審查期限從申請日起5年內降為4年等。

日本「u-Japan政策」簡介

歐洲藥物管理局(European Medicines Agency,簡稱EMA)發佈針對準備與審查產品特性摘要(summaries of product characteristics,簡稱SmPCs)的指導方針

  EMA近日針對醫藥公司,在其欲申請人體藥物上市核准的申請文件中,針對如何準備與審查產品特性摘要之文件,提供醫藥公司相關的指導方針。   產品特性摘要不僅是醫藥公司之新藥物在向歐盟申請上市核准時所必須提供的重要文件,也是健康照護專業人員在獲知如何有效並安全使用藥物時的基本資訊來源。產品特性摘要在藥品生命週期存續時必須定時保持更新,以確保無藥物效用性與安全性疑慮的新問題發生;同時,其也是在藥物包裝上所必須含有的基本資訊,以確保藥物服用者能對其所服用的藥物有更多的了解和進行各類風險評估。   產品特性摘要文件,主要係依據歐盟2001/83/EC號指令第8(3)(j)條與歐盟第726/2004號法規第6(1)條之要求而提供。前述法規要求醫藥公司在提出藥物上市許可之申請時,必須遵循歐盟2001/83/EC號指令第11條之規定,附加產品特性摘要於申請文件,以供主管機關作為申請核駁之依據。在EMA針對產品特性摘要所提供的指導方針中,主要係以簡報與影片的方式,來教導醫藥公司如何在產品特性摘要的各個項目中,提供有關申請藥物更為完整與細部的背景資訊。其中,有關於解釋如何完成治療指示(therapeutic indication)與藥物藥效成分(pharmacodynamic properties of a medicine)之項目,於EMA的指導方針中,亦以明確的影片指導來協助醫藥公司提供高品質的產品特性摘要內容。   有鑑於治療人體疾病之藥物,對於人類生理與心理層面攸關重大,如何要求醫藥公司在提出人體藥物上市許可之申請時,能提供藥物完整的背景資訊,以確保從事健康照護之人員以及藥物服用者,完全了解藥物使用方式、效用與風險,則是主管機關無從推卸的責任。觀察EMA針對人體藥物之產品特性摘要製作出完整的指導方針,或許我國衛生機關也可效仿該種方式,來提供國內醫藥公司在提出藥物上市申請時之參考,以確保各項資訊透明並保護藥物使用者在「知」方面的權益。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP