日本智慧財產戰略本部之「次世代智財系統檢討委員會」於2016年4月18日公布的報告書針對「AI創作物」有諸多討論,截取部份內容如述。
以現行著作權法來看,自然人創作產生的創作物,受到著作權保護並無疑問。倘若係自然人利用AI做為道具產出的創作物,若具備(1)創作意圖;(2)創作貢獻,兩種要件,亦得取得權利。然而,若該創作物僅透過人類指示,過程係由AI自主生成,此時該創作物即屬於AI創作物,目前非屬著作權法保護之範圍。惟上述三種情況在外觀辨識上極為困難。換言之,人類創作物與AI創作物之界線已愈趨模糊。
AI創作物可能具備多種態樣,包括:音樂、小說等,甚至包括新技術及服務的生成。以音樂、小說為例,由於日本著作權法係以「創作保護主義」為前提,只要該創作物完成時具有原創性,即受著作權保護,AI的特性可能會造成該當著作權保護之著作物數量遽增;若AI產生的成果屬於技術或服務,以專利審查需具備新穎性、進步性等要件而言,得獲取專利權難度相對比較高。
而日本政府在討論AI創作物是否具有「保護必要性」,主要係以智財權「激勵理論」出發,該理論核心在於保護人類的投資行為應獲得合理報酬,才有續行創作的動機。
本文為「經濟部產業技術司科技專案成果」
生技藥品是植基於活體生物的原理所開發出來的治療藥品,自第一批生技藥品上市以來,其專利在最近幾年已陸續到期,因此生技業者對於推出這些生物製品的學名藥版本(generic versions of biologics,以下簡稱生技學名藥),躍躍欲試。然而,美國當前的學名藥法規—藥品價格競爭及專利回復法(Drug Price Competition and Patent Restoration Act, 又名Hatch-Waxman Act, HWA),乃是針對化學藥品的學名藥版本所制定的法規,此類學名藥與生技學名藥並不相同,因此既有的學名藥法規並不能適用於生技學名藥,生技業者無不引頸企盼政府部門通過新的法規,以使生技學名藥儘速上市。 美國參議院最近提出一項生技學名藥法案—生技製品價格競爭與創新法(Biologics Price Competition and Innovation Act, BPCIA),一如HWA,BPCIA的內容也呈現出各種利益折衝的色彩,法案一方面賦予FDA對生技學名藥進行審核的新權限,並藉由減少臨床試驗之進行,加速生技學名藥的上市;另一方面,為避免低價的生技學名藥會對品牌藥的銷售產生衝擊,法案也有針對生技研發公司的研發誘因設計,以鼓勵其持續投入資金,開發更多的生技治療藥品。未來生技學名藥廠需要配合FDA所規劃的風險管理計劃(該計劃的相關立法目前尚待眾議院審議),故生技學名藥廠於其生技學名藥上市後,仍有進行臨床試驗之義務。 法案中最具爭議的條文在於,究竟應給予生技研發公司多長的銷售獨家銷售權(market exclusivity),始得允許生技學名藥廠加入市場競爭,生技研發公司與生技學名藥廠對此的歧見甚大,前者主張十四年,後者則認為五年的時間已足,目前法案訂為十二年。另一個不易處理的議題,則是藥師如何處理此類的生技學名藥,根據目前的法案內容,未來藥師亦可不經徵詢醫師而以生技學名藥代替之。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
日本《航空法》修正後之無人機最新政策發展 美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。