2010年藥物主動監視法規(pharmacovigilance legislation)要求EMA和EMCDDA必須加強在藥物產品濫用(包含不合法藥品)的資訊交換合作關係,是以,EMA和EMCDDA於今年九月初於葡萄牙里斯本相互簽署了修訂工作協議(amended working arrangement),約定在新型精神性影響藥物與藥物濫用的面向上,加強相互間的資訊交流合作。 於EMA和EMCDDA所簽訂的修正工作協議中,雙方約定就下列領域深化資訊交換: 1.雙方需各自依照歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條,對於所擁有之新型精神性影響藥物與藥物濫用(包含不合法藥品)資訊進行交換合作; 2.資訊交換需透過通常基準的報告形式由EMCDDA送至EMA,並含括有關於藥物產品濫用、不合法藥物,以及新型精神性影響物質等相關資訊; 3.EMA必須通知EMCDDA有關於藥物產品濫用的有效導因(validated signals),同時,EMA必須提供EMCDDA有關於藥物產品濫用和新型精神性影響藥品市場核准狀況的細部資訊; 4.EMA對於選定藥物產品之風險管理計畫的界定,可考量是否需先行與EMCDDA作諮詢意見交換; 5.EMA和EMCDDA在歐盟執委會2005/387/JHA決議和歐盟1235/2010號法規第28c(2)條所設基礎的合作模式下,必須要特別注意確保人類或動物健康照護並無惡化的情事,同時應確保科學建議之潛在衝突於前階段將會被界定與管理; 6.EMA和EMCDDA兩者間諮詢的進行,必須避免非關於新型精神性影響物質風險評估之科學建議的潛在衝突; 7.對於任何額外合作計畫的執行,必須考量EMA和EMCDDA兩者的例行性工作規劃; 8.對於特定計畫需要額外資源時,必須經由EMA和EMCDDA共同同意,並將同意文件附於現階段的工作協議中; 9.EMA和EMCDDA可就其各自舉辦的會議相互邀請對方,並邀請對該會議有興趣的其他團體參與; 10.對於EMA和EMCDDA間實際的合作面向,將在工作協議既定架構下繼續發展。 除了前述的適用範圍外,EMA和EMCDDA的修訂工作協議,亦有就相互諮詢和秘密資訊等領域作出約定,以確保資訊交換係在符合雙方需求與不侵害個人基本權利的情況下進行。有鑑於EMA和EMCDDA希冀藉由資源互補的強化約定,來彌補自身於精神性影響藥物和藥物濫用領域的資訊不足缺陷,是否我國在相關醫療、藥品管制或是藥品商業化資訊需有跨機關的整合機制,以促使我國在醫療、醫藥資訊交換與流通,在不侵害個人基本權利的情況下,能夠發揮互益效用,則是我國有關單位必須審慎思考的問題。
淺談攻擊性商標對於商標權之內容是否涉及對特定人士的產生不快或冒犯,以及國家是否有權禁止其註冊為商標之問題,我國法係在商標法第30條第1項第7款中規定,商標妨害公共秩序或善良風俗者,不得註冊;並經由經濟部智慧財產局訂定「商標妨害公共秩序或善良風俗審查基準」,建立認定準則,並認為應「考量註冊當時之社會環境,並就其指定使用商品或服務市場之情況、相關公眾之認知等因素綜合判斷」。 而在美國法中,亦有 Lee v. Tam一案,針對美國專利商標局 (United States Patent and Trademark Office, USPTO)是否有權依照 The Lanham Act第2條a款規定駁回商標申請的權利進行爭執,該條規定「包含不道德、欺騙、誹謗性、貶損或誤導他人(不論生死)、組織、信仰或國家象徵等意涵、或導致前者名譽受損之圖案,不可註冊為商標」。 該案在2015年12月22日於美國聯邦巡迴上訴法院進行判決,法院認為,儘管是具攻擊性的歧視言論,亦受到美國聯邦憲法第一修正案所保障,故美國政府不得以商標圖案的言論內容具攻擊性為理由,拒絕商標的註冊。本案經上訴於美國聯邦最高法院,最高法院於2016年9月29日已經同意其提起上訴,將對本案進行審理。
美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。
英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。 委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。 再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。 本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。