全美達向英特爾提出專利訴訟Transmeta files suit against Intel

  加州,聖荷西(San Jose)-雖然已於去年(2005)放棄以x86為基礎之微處理器業務,全美達(Transmeta Corp.)日前宣告英特爾(Intel Corp.)侵害其專利權,並且已經對英特爾提起訴訟。


  全美達向美國Delaware地方法院提起訴訟,主張英特爾侵害全美達多達10項的專利權。根據全美達表示,這些專利涵蓋了電腦架構以及電源效能技術。此外,該訴訟案指控英特爾藉由製造以及販賣多種微處理器產品而已經侵害或正在侵害前述之專利權,該等微處理器產品至少包含英特爾的Pentium III、Pentium 4、Pentium M、Core以及Core 2等產品線。並且,全美達請求法院禁止英特爾繼續銷售侵權產品,並提供金錢賠償,包括為侵權產品支付合理的專利費、三倍的賠償金和律師費。


  全美達執行副總裁John O'Hara Horsley表示,全美達已經發展出完整且強大的智慧財產權組合,以掌握並且保護發展微處理器技術的重要資產。此外,John O'Hara Horsley也表示,英特爾在主要處理器產品線中使用了不少全美達的創新技術,該公司是在向英特爾要求合理授權費卻失敗之後,決定走上法律程序。

相關連結
※ 全美達向英特爾提出專利訴訟Transmeta files suit against Intel, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=732&no=67&tp=1 (最後瀏覽日:2026/01/14)
引註此篇文章
你可能還會想看
美國FDA更新軟體預驗證計畫,以明確化數位健康科技的軟體器材審查流程

  美國食品及藥物管理局(the U.S. Food and Drug Administration)於2019年1月更新「軟體預驗證計畫(Software Precertification Program)」及公布該計畫「2019測試方案(2019 Test Plan)」與「運作模式初版(A Working Model v1.0)」,使審查流程更加明確及具有彈性,並促進技術創新發展。   在更新計畫中,FDA聚焦於審查架構的說明,包含考量納入醫療器材新審查途徑(De Novo pathway)及優良評估流程(Excellence Appraisal process)的審查內涵。在優良評估流程中,相關研發人員須先行提供必要資訊,以供主管機關驗證該軟體器材之確效(validation)及是否已符合現行優良製造規範(current good manufacturing practices)與品質系統規範(Quality System Regulation, QSR)的要求。而由於以上標準已在此程序中先行驗證,主管機關得簡化上市前審查的相關查證程序,並加速查驗流程。   在測試方案中,則說明FDA將同時對同一軟體器材進行軟體預驗證審查及傳統審查,並比較兩種途徑的結果,以確保軟體預驗證審查途徑中的每一個程序都可以有效評估產品上市前所應符合的必要標準。最後,FDA綜合軟體預驗證計畫及測試方案,提出「運作模式初版」,以協助相關人員了解現行的規範架構與處理程序,並期待藉此促進技術開發者及主管機關間的溝通。FDA並於運作模式文件中提到,將在2019年3月8日前持續接受相關人員的建議,而未來將參酌建議調整計畫內容。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

中研院開發「奈米質譜檢測技術」1小時知道是否罹癌

  「蛋白質體學」是醫學研究的新領域,透過對「蛋白質變異」的研究來瞭解疾病的機制,現在已經可以成功診斷出許多疾病。不過,因為血液中跟疾病有關的「標記蛋白質」,含量往往很低;傳統「酵素免疫法」( ELISA )的檢測流程總得進行個大半天,往往造成時間的浪費。   中央研究院發表獨步全球的「磁性奈米粒子」質譜驗血技術,只要使用小學生使用的磁鐵,就可以迅速「大海撈針」,從血液中吸出和SARS、癌症、中風等病症相關的標記蛋白質,可以在一小時內診斷病情。這項研究成果正在申請國內外專利,臨床實驗、認證後,民眾未來只要多花幾百塊錢,就能夠享受這項最新的奈米科技。不管胃癌、乳癌或大腸癌,只要 ELISA 能夠檢測的項目,這套技術都可以更有效率地完成。不過因為「質譜儀」價格昂貴,臨床運用又需相關認證,普及化可能還得再等一段時間。

數位商品交易金流機制之法律問題

TOP