全美達向英特爾提出專利訴訟Transmeta files suit against Intel

  加州,聖荷西(San Jose)-雖然已於去年(2005)放棄以x86為基礎之微處理器業務,全美達(Transmeta Corp.)日前宣告英特爾(Intel Corp.)侵害其專利權,並且已經對英特爾提起訴訟。


  全美達向美國Delaware地方法院提起訴訟,主張英特爾侵害全美達多達10項的專利權。根據全美達表示,這些專利涵蓋了電腦架構以及電源效能技術。此外,該訴訟案指控英特爾藉由製造以及販賣多種微處理器產品而已經侵害或正在侵害前述之專利權,該等微處理器產品至少包含英特爾的Pentium III、Pentium 4、Pentium M、Core以及Core 2等產品線。並且,全美達請求法院禁止英特爾繼續銷售侵權產品,並提供金錢賠償,包括為侵權產品支付合理的專利費、三倍的賠償金和律師費。


  全美達執行副總裁John O'Hara Horsley表示,全美達已經發展出完整且強大的智慧財產權組合,以掌握並且保護發展微處理器技術的重要資產。此外,John O'Hara Horsley也表示,英特爾在主要處理器產品線中使用了不少全美達的創新技術,該公司是在向英特爾要求合理授權費卻失敗之後,決定走上法律程序。

相關連結
※ 全美達向英特爾提出專利訴訟Transmeta files suit against Intel, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=732&no=67&tp=1 (最後瀏覽日:2026/02/20)
引註此篇文章
你可能還會想看
中國發布《個人信息保護合規審計辦法》,明確企業個資審計責任

中國國家互聯網信息辦公室於2025年2月12日公布《個人信息保護合規審計管理辦法》(下稱《辦法》)及其配套指引,自2025年5月1日正式實施。《辦法》及指引的發布,旨在落實《個人信息保護法》中的稽核規定,完善個資合規監督架構,為企業提供執行審計的制度依據。 《辦法》區分合規審計為兩大形式:企業可自行或委託專業機構定期進行審計;另當主管機關發現高風險處理活動或發生重大資料外洩事件時,有權要求企業限期完成外部審計,並提交報告。針對處理規模較大的企業,《辦法》特別規定,凡處理超過1,000萬人個資的業者,須至少每兩年完成一次審計。 針對大規模蒐用個資企業,《辦法》亦強化其配合責任,對於處理超過100萬人資料的企業,須設置個資保護負責人;對大型平台服務業者,則須成立主要由外部人員主導的獨立監督機構,以確保審計客觀性。 在審計執行層面,《辦法》對第三方審計機構的條件、獨立性與保密義務提出具體要求,並禁止將合規審計轉委託,防堵審計品質不一,或個資分享過程增加外洩風險。同時,也規範同一機構或審計負責人不得連續三次審計同一對象,以強化審計公正性。 《合規審計指引》進一步列出具體審查項目,包括處理合法性、告知義務、資料共享、敏感及未成年個資保護、境外傳輸、自動化決策與安全措施等,協助企業全面落實個資合規審查。

德國總理梅克爾敦促歐盟立法允許「資訊追蹤(data tracking)」,以有效打擊恐怖主義

  2014年7月歐盟法院宣告2006年起施行的「資料保留指令」無效,該指令允許警察機關使用私人通聯記錄,但不允許揭示通訊內容。資料保留指令之所以被歐盟法院廢止,起因於不合乎比例原則及沒有充分的保護措施,該指令規定歐盟成員國必須強制規定電信公司必須保留客戶最近六個月到十二個月的通聯紀錄,不過在歐盟法院廢止指令之前,德國憲法法院在2010年時就已經以違反憲法為由停止執行指令。   惟在2015年1月,伊斯蘭激進主義份子的恐怖攻擊事件,共12人被射殺。因此德國總理梅克爾2015年1月在下議院針對該恐怖事件發表演說,雖因美國的史諾登事件,揭露美國政府大量監聽私人通訊和監視網路流量的行動,而引起了德國人對隱私權保護的關注,但梅克爾表示德國各層級的部會首長都同意有使用私人通聯記錄的需要、使嫌疑犯的通聯記錄能夠被警方用來偵查犯罪,但應該由法律規範資料保留的期間限制,她敦促各界向歐盟委員會施加壓力,重新訂定資料保留指令,使各歐盟成員國能修正國內法律。   歐盟委員會正在評估此法制議題,並考慮向歐盟議會、各成員國、民間團體、執法部門和個資保護組織間建立開放式對話,決定是否有需要訂定新指令;但德國司法部長並不贊成梅克爾擴大監督人民通訊的想法,認為這是過於倉促的行動,而且除了資訊記錄留存外,德國政府也儲存所有媒體資料並限制媒體自由,他認為這並不合適。   目前英國國內保守黨和自由黨現正為新修訂的通訊資料法,為人民隱私權的保護範圍爭論不休,而美國由於近年受到不少駭客攻擊,故美國總統歐巴馬採取與梅克爾相似的立場,希望能擴張執法機關的權力,公開提倡強化美國網路安全相關法規。

循環型採購(Circular Procurement)

  相較於綠色採購(Green public procurement, GPP)所揭櫫的於採購產品、服務或勞務時選擇於其生命週期中對於環境造成衝擊較小者,循環型採購(Circular Procurement)可說是在綠色採購的基礎上,加入循環經濟(Circular Economy)強調最大化資源利用效率的概念,使對於環境的影響與衝擊並非唯一的標準,而應考量產品、服務或勞務對資源的利用效益。   歐盟執委會於2017年10月發布《循環經濟公共採購範例與指引》(Public Procurement for A Circular Economy: Good Practice and Guidance),其中指出循環型採購的意義在於促進歐盟邁向循環經濟轉型,藉由循環型採購所創造的需求,達成循環經濟所強調封閉資源循環(Closing the Loop)以最大化資源利用效率的概念,並肯認政府採購為推動循環經濟轉型的重要誘因之一。   具體的循環型採購做法,包含選擇具高度資源循環利用性的產品,例如可維修、再利用或利於回收再循環的產品,以及以採購服務代替採購硬體等,透過循環型採購對於資源利用效率的重視,支持符合循環經濟概念的產品設計、研發技術與商業模式等創新成果,與提出這些解決方案的企業或團隊,進而達成促進社會邁向循環經濟轉型與永續發展的目標。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP