世界智財組織尋求保護來自傳統知識與遺傳資源的產品

  長久以來國際藥廠從大量販售的藥物中獲取上億元的營收,例如抗癌藥物與抗瘧藥物,均是萃取自中國的草本植物,但是這些擁有藥物傳統知識與遺傳資源的族群部落(the community),卻只得到相對微薄的報酬。為此,世界智慧財產組織(The World Intellectual Property Organization)已經在過去五年中力圖達成將利益擴及到提供傳統知識與遺傳資源的族群部落。


  許多先進國家到非洲、亞洲等地方蒐尋具有療效的植物後,回實驗室進行研發萃取其物質後做成藥物,但卻從來沒有主動的揭露其來源,也不曾主動的回饋其獲利給那些藥廠從中獲得藥物植物的族群部落。開發中國家已試著要去制止這非法的竊用傳統知識的行為。


  但由於傳統知識是累積的,因此傳統知識的保護也面臨到如何認定其於何時已存在的困難。因此傳統的智慧財產保護體系對於不能確認個別權利人與權利標的範圍的傳統知識無法提供保護。


  不過,世界智慧財產組織表示藥廠已開始關心並參與傳統知識利用的協議,因為這些投資億元於研發而已有成功結果的藥廠,並不希望他們處於一個法律上不確定的狀態。

相關連結
※ 世界智財組織尋求保護來自傳統知識與遺傳資源的產品, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=734&no=65&tp=1 (最後瀏覽日:2024/11/24)
引註此篇文章
你可能還會想看
華碩因路由器資安漏洞遭起訴一案與美國聯邦貿易委員會達成和解

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2014年間以路由器(Router)與雲端服務的安全漏洞,導生消費者面臨資安與隱私風險之虞,而依據《聯邦貿易委員會法》第5條(Federal Trade Commission Act, 15 U.S.C. § 45(a))委員會防止不公平競爭違法手段(unfair methods of competition unlawful ; prevention by Commission)之規定,即華碩涉嫌行使不公平或詐欺的手段致影響商業活動之公平競爭為由,對我國知名全球科技公司華碩電腦股份有限公司(ASUSTeK Computer, Inc.)進行起訴 。   本案歷經FTC近二年的調查程序後,華碩公司於2016年2月23日同意FTC的和解條件,即華碩公司應針對部分存在資安疑慮的產品依計畫進行改善,並且於未來20年期間內須接受FTC的獨立稽核(independent audits)。 FTC於該案的起訴報告中指出,華碩於銷售其所生產的路由器產品時,曾對消費者強調該產品具許多資安保障措施,具有得以防止使用者不受駭客攻擊等效果;然而,該產品實際上卻具有嚴重的軟體設計漏洞,使駭客得以在使用者未知的情況下,利用華碩路由器的網頁控制面板(web-based control panel)之設計漏洞,任意改變路由器的安全設定;更有專家發現駭客於入侵華碩製造之路由器產品後,得以強佔使用者的網路頻寬。   此外,華碩允許使用者沿用路由器產品的預設帳號密碼,再加上華碩所提供的AiCloud與AiDisk雲端服務功能,讓使用者得以隨身硬碟建立其私有的雲端儲存空間,使得駭客得藉由上述華碩路由器的設計漏洞直接竊取使用者於隨身硬碟內所儲存的資料。FTC並於起訴聲明中指出,駭客利用華碩路由器產品與相關服務的漏洞,於2014年間成功入侵超過12,900多位產品使用者的雲端儲存空間。除此之外,使華碩更加備受譴責的是,當該漏洞被發現之後,其並未主動向產品的使用者強調產品存在該資安問題,更未告知使用者應下載更正該設計漏洞的軟體更新,因此FTC始決定對華碩進行起訴。

Codex研提進口食品含有未經核准之GMO含量的技術指導原則

  由聯合國農糧組織及世界衛生組織共同成立的The Codex Alimentarius Commission (Codex),刻正研提一份與GMO有關的重要技術指導原則,以協助各國評估並管控進口食品是否含有未經核准的GMO或由未經核准的GMO所製程的風險,藉此降低食品貿易的障礙。   關於未經核准的GMO,目前歐盟採取的零容忍度政策(zero-tolerance policy),亦即,進口之食品或飼料中,絕對不能含有未經核准的GMO或由未經核准的GMO所製程,至於一般所知的歐盟0.9%的GMO標示義務,是適用在經依法核准上市的GMO,若因技術上不可避免的原因而使非基改產品含有此GMO之可容忍界線。   根據Codex調查,許多GMO的上市審查在歐盟受到延宕,但這些GMO在歐盟以外其實很多都已經被其他國家核准,或歐盟的技術審查單位—食品安全管理局(European Food Safety Authority, EFSA)也已提出正面的安全評估意見,但歐盟執委會卻遲遲未完成行政審查,造成在歐盟進口的食品或飼料中若含有這些GMO,即被認定為未經核准而影響產品之進口。   鑑於歐盟的GMO管理與出口國的GMO管理有重大的制度面差異,Codex認為此一制度面的衝突若不尋求解決,未來將越演越烈,影響的作物範圍也會越來越廣,因而Codex才會思考制定相關的技術指導原則,解決某GMO可能在一個或多個國家已經被核准上市,但在進口國還未經核准上市,而進口非基改食品或飼料中卻含有這些GMO的問題,目前Codex預計在2008年7月提出相關的技術指導原則建議。

歐盟於2020年3月提出「歐洲氣候法」草案以實踐零碳排願景

  歐盟執委會(European Commission)於2020年3月6日提出「歐洲氣候法」(European Climate Law)草案,執委會提出該草案之目的,係為實現2019年「歐盟綠色新政」(European Green Deal)所確立的目標,以敦促歐盟所有政策及公、私部門,皆能為零碳排願景共同努力。歐盟期望在2050年前成為世界第一個碳中和地區,並轉型為一個經濟成長卻不損及資源消耗與開採的綠色經濟體。該法性質屬於「規則」(regulation)的法律位階,具有普遍性規範效力,得直接適用於歐盟成員國,意即歐盟成員國必須遵守及實施歐洲氣候法的規範內容。「歐洲氣候法」草案全文共11條條文,其規範重點及法制架構,簡要整理如下: 氣候法草案之法律框架應與歐盟現行政策保持一致性,例如再生能源、綠色新政下的投融資計畫、產業戰略及循環經濟行動計畫等,並審查歐盟能否將原先2030年與1990年相比減少40%的減量目標,提高至減少50至55%。 法律基礎應奠基於維護、保護及改善環境品質,輔助及加強國家與地方因應氣候變遷的行動措施;在符合比例原則下,要求歐盟成員國針對氣候中和目標採取必要保護措施。 依據歐盟基本權利憲章第37條環境保護之要求,有關高標準之環境保護及環境品質改善,必須納入歐盟政策及符合永續發展原則;透過氣候法來促成及凝聚社會轉型的共識,該法要求執委會應促進利害關係人及公民社會的參與,增強公民參與的交流,透過社會參與達成廣泛的永續發展共識,並規劃多層次氣候與能源的社會對話。 考量歐盟內部公平且團結的重要性,執委會於2023年9月開始,每隔5年將監測與評估歐盟及各會員國之綱要政策與保護行動,並針對不一致行動或保護不足情形,將提供適當的改善建議及具體措施,藉以確保歐盟成員國彼此間氣候政策與歐盟框架保持一致。   歐盟執委會期望透過具有強制約束力的法制框架,除實現巴黎協定之承諾(2050年前達到零排放之願景)外,更是為了結構性脆弱與抵禦氣候變遷能力不足的成員國,提供一個公平的轉型框架。目前該草案已於2020年5月完成公眾意見徵集,歐盟執委會雖未明確公布預計通過的日期及相關規劃,但其將於2021年6月前盤點相關規範,藉以整體性調修法制規範與氣候治理行動。

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

TOP