英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年3月公布5G測試平台及試驗計畫(5G Testbeds and Trials Programme)中之都市聯網計畫(Urban Connected Communities Project)政策文件,將於英國大規模推展5G試驗。同年9月4日,數位部部長宣佈其5G試驗團隊正與西密德蘭郡聯合管理局(the West Midlands Combined Authority, WMCA)及相關產業夥伴合作準備正式商業案例,預計將於2019年推行第一個計畫項目。 本項目內容側重於醫療及汽車業,包含: 1. 透過流暢的視訊方式進行遠距醫療諮詢(Outpatient appointment)或緊急醫療情況之諮詢,而該視頻之內容除可回放外,與家人及看護間並可進行共享查看,以提升醫療照護之效率與品質。 2. 「聯網救護車」:醫療輔助人員得於事故現場即時獲得專家建議,例如與顧問或臨床專家進行視訊。並於救護車內即能傳送患者之即時資訊至醫院,使患者抵達醫院時能進行快速且妥適處理。 3. 即時傳輸公共巴士上之閉路電視(CCTV)畫面,以便立即採取行動制止反社會行為(anti-social behaviour)。 計畫將可獲得高達5000萬英鎊之資金,並於柏明罕、考文垂以及伍爾弗漢普頓(Birmingham, Coventry and Wolverhampton)設立試驗中心執行相關計畫。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
日本《外包法》日本外包法,正式名稱為外包價金給付遲延等防止法(下請代金支払遅延等防止法,又簡稱下請法),其制定目的在於確保大型企業外包其業務予中小型企業時之交易公正性,防止外包業者濫用其相對於承包業者之優勢地位,並保護承包之小型業者的利益,而該法的主管機關為公平交易委員會(公正取引委員会)。 依該法規定,於以下情形有本法之適用:(1)業者發包委託承包業者製造、修理物品與委託承包商提供該法授權行政命令訂定列舉的資訊成果產品(製作程式)或服務(運送、將貨品保管在倉庫、資訊處理),且發包之大型企業資本額 3億日圓以上、承包之小型企業資本額3億日圓以下,或發包企業資本額於3億元以下1000萬日圓以上、承包企業資本額在1000萬日圓以下時;或(2)業者發包委託承包業者作成非屬上述行政命令所列舉之資訊成果產品(如製作電視節目或廣告、設計商品、產品之使用說明書等)、或提供非屬行政命令列舉之服務(如維修建物或機械、提供客服中心服務等),且發包業者資本額5000萬日圓以上、承包業者資本額在5000萬日圓以下,或發包業者資本額在5000萬日圓以下1000萬日圓以上、承包業者資本額於1000萬日圓以下。 符合上開法定要件時,發包業者應訂定契約價金之給付期日,不得遲延給付價金,若給付遲延則有義務支付遲延之利息等,同時禁止發包業者拒絕受領承包業者交付的履約標的,禁止無故減少契約價金、退貨、或對承包業者採取報復性措施。若發包業者違反上述規定,則由日本中小企業廳或該發包業者之事業主管機關請求日本公平交易委員會(公正取引委員会)採取相應措施,該會則得據此針對該違反行為向發包業者作出書面勸告,同時對外公開該發包業者之公司名稱、其違反行為之事實概要、以及勸告內容的概要。此外,為防止口頭約定造成日後衍生交易糾紛,發包業者於下單時,應以書面明確約定並記載例如承包業者的履約標的、契約價金數額等法定應記載事項,並在下單後立即交付該書面予承包業者,如違反,得對該發包業者課予50萬日圓以下罰金。
OECD發布《抓取資料以訓練AI所衍生的智慧財產問題》報告經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2025年2月9日發布《抓取資料以訓練AI所衍生的智慧財產問題》報告(Intellectual property issues in artificial intelligence trained on scraped data),探討AI訓練過程中「資料抓取」對智慧財產之影響,並提出政策建議,協助決策者保障智財權的同時推動AI創新。 資料抓取是獲取AI大型語言模型訓練資料之主要方法,OECD將其定義為「透過自動化方式,從第三方網站、資料庫或社群媒體平臺提取資訊」。而未經同意或未支付相應報酬的抓取行為,可能侵害作品之創作者與權利人包括著作權、資料庫權(database rights)等智慧財產及相關權利。對此,報告分析各國政策法律的因應措施,提出四項關鍵政策建議: 一、 訂定自願性「資料抓取行為準則」 訂定適用於AI生態系的準則,明確AI資料彙整者(aggregators)與使用者的角色,統一術語以確保共識。此外,準則可建立監督機制(如登記制度),提供透明度與文件管理建議,並納入標準契約條款。 二、 提供標準化技術工具 標準化技術工具可保護智財權及協助權利人管理,包括存取控制、自動化契約監控及直接支付授權金機制,同時簡化企業合規流程。 三、 使用標準化契約條款 由利害關係人協作訂定,可解決資料抓取的法律與營運問題,並可依非營利研究或商業應用等情境調整。 四、 提升法律意識與教育 應提升對資料抓取及其法律影響的認知,協助權利人理解保護機制,教育AI系統使用者負責任地運用資料,並確保生態系內各方明確瞭解自身角色與責任。