美國司法部(United States Department of Justice)、美國專利商標局(The United States Patent and Trademark Office)、美國國家標準與技術研究院(National Institute of Standards and Technology)於2021年12月6日共同發布「修改『標準必要專利』授權協議及司法救濟方法之政策宣言草案」(Draft Policy Statement On Licensing Negotiations And Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2021政策宣言草案),並徵集公眾意見,截止時間為2022年2月4日。2021政策宣言草案係在回應2021年7月9日「促進美國經濟體競爭性行政命令」(Executive Order on Promoting Competition in the American Economy)關於檢討2019年「有關『標準必要專利』司法救濟方法之政策宣言」(Policy Statement On Remedies For Standards-Essential Patents Subject To Voluntary FRAND Commitments,下稱2019政策宣言)之要求。 2021政策宣言草案揭示了兩大重點: (一)改變SEP被侵害時,對禁制令(injunction)之核發態度 2021政策宣言草案對於「SEP被侵害時,是否核發禁制令」一事,擬回歸適用聯邦最高法院自eBay Inc. v. MercExchange, L.L.C., 547 U.S. 388 (2006)案以來,就禁制令之核發所設立之原則—(1)原告(專利權人)會因專利侵權而遭受無法填補(irreparable)的損害;(2)目前法律上之其他救濟方法,是不足以賠償專利權人所受的損害;(3)衡量專利權人及被授權人可能遭遇之困難,足認有必要進行衡平法上的救濟;(4)核發禁制令不會傷害到任何公共利益。 (二)揭示何謂符合「誠信原則」(good-faith)授權協議的指導原則 (1)雙方應以合宜態度推進授權協議: 以SEP專利權人而言,其應向潛在被授權人告知可能侵害該SEP的行為態樣;其並以「公平、合理及無歧視」(fair, reasonable, and non-discriminatory, FRAND)原則進行授權。 以SEP被授權人而言,其應於知悉以上資訊後,於商業上得被認為合理的時間內,以合宜態度推進該協議,或逕自接受該授權協議,或拒絕原要約而反向提出一合於FRAND原則之新要約(counteroffer)。其他合宜態度例如:就SEP專利權人提出進一步探詢(例如:詢問該SEP目前之專利有效性及有無侵權情形)或請求提供更具體的資訊,或建議目前雙方所遇到的授權上爭議可透過公正第三方解決。 茲有附言者,SEP專利權人在收到以上回應後,亦應「於合理的時間以合宜態度」推進授權協議,例如接受被授權人反向提出之新要約,或為使原授權協議較可被接受,再行提出一合於FRAND原則之授權條款,或回應被授權人想得知更多資訊之請求,或亦提出「可透過公正第三方解決雙方所遇到之授權紛爭」的方案等。 (2)雙方應合宜妥善解決紛爭: 如雙方因授權而生紛爭,建議尋求替代爭議解決方式(alternative dispute resolution);如仍欲透過司法解決,建議雙方就管轄法院達成合意,而非單方面擇定法院而提起訴訟。 此次徵求公眾意見的主要議題如下: (1)2021政策宣言草案是否較可適當平衡SEP專利權人及被授權人之利益? (2)「可申請核發禁制令」一事是否為SEP專利權人願意遵守FRAND原則的重要因素? (3)如何提升SEP授權協議之效率及透明度? (4)2021政策宣言草案所揭示對於SEP授權時之「誠信原則」之指導原則,可否為SEP授權協議建構良好架構? (5)是否有潛在SEP被授權人願意及不願意接受FRAND授權協議之情形? (6)有關單位是否曾經或應就SEP授權協議提供其他參考資訊?
現有法制對公立大學教授技術作價之現況與困難 談我國基因改造生物田間試驗管理規範之現況與修正方向 經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。