世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。
德國提出「對外貿易條例」修正草案德國聯邦經濟與能源部(Bundesministerium für Wirtschaft und Energie,BMWi)在2017年7月提出「對外貿易條例」(Außenwirtschaftsverordnung)修正草案,以規定基於德國的公共政策安全或基本安全利益,對於外國人(或企業)收購國內公司,在必要時得予以禁止或增加強制條件。 如果交易完成後(一)歐盟之外的收購方將直接或間接持有目標公司25%以上的表決權以及(二)出於公共秩序或安全原因有必要採取上述措施,聯邦經濟與能源部可禁止對德國公司的收購交易。 該法修正草案亦進一步規定,聯邦經濟能源部將在本法律框架下對於涉及以下(技術)領域相關企業併購案之合約談判的各方進行審查程序,以確保國家實質安全利益: 部分能源電力領域,例如:電廠控制技術、電網工程技術、電廠系統或系統操作的控制技術(供電、供氣、燃油或集中供熱等)。 部分用水領域,例如:用水控制、調配或自動化技術(飲用水供應或污水處理設施)。 訊息技術和電信軟體領域,例如:語音和數據傳輸、數據儲存系統及處理系統)。 金融和保險部門、其運營的軟體或現金系統。 涉及醫療保健軟體部門或醫院管理訊息系統、處方藥和實驗室訊息系統的運行等領域部分。 涉及運輸和交通領域內的控制系統、工廠或設施的運行、航空運輸、乘客和貨物系統、鐵路運輸、海運和內河運輸、公路運輸、公共交通或後勤物流等領域。
英國推動農場資料認證計畫,首重資料生成、保護與維護管理英國Farm Data Principles組織(下稱FDP,前身為英國農場資料委員會(The British Farm Data Council)),在2024年2月26日英國農業科學技術跨黨派小組(All Party Parliamentary Group for Science & Technology in Agriculture)於西敏寺辦理的會議,正式宣告農場資料認證計畫,FDP強調因目前欠缺資料治理原則,導致缺乏信任等資料使用障礙,並指出若未事先約定資料如何使用等,將致無法明確保護資料。截至目前為止,已經有7個組織取得完全(Full)或臨時(Provisional)認證。 農場資料認證計畫包含四大核心要求,分別為: 1.「您的資料是您的資料(YOUR DATA IS YOUR DATA)」:如強調應由資料生成者擁有及管控資料,且未經其許可,不得接觸、儲存、共享或銷售資料,以及應明確說明參與資料處理的對象等。 2.「通過認證的組織清楚資料共享的價值和好處(CERTIFIED ORGANISATIONS ARE CLEAR ABOUT THE VALUE AND BENEFIT OF DATA SHARING)」:如應針對資料使用範圍及方式,提供明確說明,以及必須解釋如何整合資料及其衍生的價值等。 3.「通過認證的組織須確保資料安全(CERTIFIED ORGANISATIONS KEEP YOUR DATA SAFE)」:如為維護資料安全,應採取適當的資料安全標準及規劃資料外洩處理流程等。 4.「通過認證的組織須努力使資料變得簡單(CERTIFIED ORGANISATIONS STRIVE TO MAKE DATA EASY)」:如提供資料相關教育訓練,以及確保組織能夠回應請求或投訴等。 為因應農業資料於研發過程中的資料應用風險,資策會科法所創意智財中心協助農業部研擬「智慧農業科技研發資料源頭查檢說明手冊」,並於2024年3月14日正式發布,相關手冊所附之資料管理查檢表,可協助智農科技研發者針對資料取得、使用及管理,事先進行整體性規劃,並與不同的資料提供者及合作對象就資料權利義務約定清楚。其中針對資料管理,更依照資料生成、保護及維護的標準化作業流程,設計各階段相應的管控要項,確保農業資料持續處於有效管理的狀態,以降低資料潛在風險,促進資料流通應用。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國紐約州通過《政府自動化決策監督法》規範州政府使用自動化決策系統紐約州州長於2024年12月21日簽署《政府自動化決策監督法》(Legislative Oversight of Automated Decision-making in Government Act, LOADinG Act),用以規範紐約州政府使用人工智慧自動決策系統的方式以及相關義務,成為美國第一個通過這類法律的州。 該法所定義之「自動化決策系統」係指任何使用演算法、計算模型或人工智慧技術,或其組合的軟體,用於自動化、支援或取代人類決策;這類系統亦包括應用預定義規則或機器學習演算法進行資料分析,並在自動產生結論、建議、結果、假設、預測。 針對政府使用自動化決策系統之情形,《政府自動化決策監督法》有三大重點:人類監督、影響評估以及資訊揭露。 一、人類監督 州政府在提供社會福利資源或其他可能實質影響人民權益與法定權利的業務時,除非是在「有意義的人工審查」下進行操作,否則不得使用自動化決策系統。同時,此法也強調,州政府亦應確保其員工現有權利不會受到自動化決策系統的影響,例如不得因此受到解雇、調職或減薪等。 前述有意義的人工審查,係指對自動化決策流程進行審查、監督及控制的工作人員,必須是受過訓練、對該系統有一定之了解且擁有權力干預、變更系統最終決策的人。 二、影響評估 州政府如欲使用自動化決策系統,應進行影響評估且每兩年應至少重新評估一次;系統在進行重大更新前,也應重新進行影響評估。若評估發現系統產生歧視性或有偏見的結果,機關必須停止使用該系統及其生成的資訊。 影響評估的項目除了性能、演算法及訓練資料外,亦應進行準確性、公平性、偏差歧視、以及個人資料安全等相關測試。 三、資訊揭露 影響評估需在系統實施前至少30天提交給州長與州議會,並在相關機關的網站上公布;僅機關在特殊情況下(例如涉及公共安全考量),州政府可針對報告揭露之資訊進行必要的刪改,但必須說明做出此決定的原因。此外,州政府亦需於本法通過後向州議會提交報告,說明包括系統描述、供應商資訊、使用開始日期、用途、人類決策的支持或取代情況、已進行的影響評估摘要等。 本法強調對人工智慧技術的審慎應用,特別關注其對勞工權益的影響。該法明確規定,禁止在無人類監督的情況下,使用自動化系統進行失業救濟或育兒補助等福利的審核決策,並保障州政府員工不因人工智慧的實施而減少工作時間或職責。此類規定在現行立法中較為罕見,顯示出立法者對勞工權益的高度重視。該法的實施效果及影響,值得未來持續保持關注。