從法規及經營面探討電力線通訊開放的相關問題-從美國聯邦通訊委員會的管制措施談起

刊登期別
2005年09月
 

※ 從法規及經營面探討電力線通訊開放的相關問題-從美國聯邦通訊委員會的管制措施談起, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=751&no=67&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

巴西政府公布個人數據保護法草案

  巴西政府於2015年1月28日公布個人資料保護法草案(Regulation Of The Brazilian Internet Act And Bill Of Law On Personal Data Protection),該草案適用於個人和通過自動化方式處理個人資料的公司,惟前提是(1)處理行為發生在巴西或(2)蒐集個人資料行為發生在巴西。該草案將強加規範企業處理其在巴西的個人資料,包括資料保護義務和要求: 一、企業必須使資料當事人能夠自由的、直接的,具體的使當事人知悉並取得人同意以處理個人資料。 二、除了在有限的例外情況下,禁止處理敏感個人資料。例如資料當事人已被告知處理敏感個人資料的相關風險,並有具體的同意。敏感的個人資料包括,種族和民族淵源,宗教,哲學或道德信仰,政治觀點,健康和性取向資料,以及遺傳數據。 三、資料外洩時有義務立即報告主管機關。 四、當個人資料是不完整,不準確或已經過期時,允許資料當事人查詢他們的個人資料並更正之。 五、不得提供個人資料給資料保護水平不相似的國家。 六、有義務依比例原則採取安全保障措施以處理個人數據,防止未經授權的訪問,破壞,丟失,篡改,通訊或傳播資料。

日本自動駕駛損害賠償責任研究會報告

  為釐清自駕車事故發生時,該如何適用日本《汽車賠償法》相關規定,國土交通省於2016年11月設置「自動駕駛損害賠償責任研究會」,檢討︰(1)自動駕駛是否適用《汽車賠償法》上運用供用者概念?(2)汽車製造商在自動駕駛事故損害中應負何種責任?(3)因資料謬誤、通訊不良、被駭等原因導致事故發生時應如何處理?(4)利用自動駕駛系統時發生之自損事故,是否屬於《汽車賠償法》保護範圍等議題,並於2018年3月公布研究報告。針對上述各點,研究會認為目前仍宜維持現行法上「運行供用者」責任,由具有支配行駛地位及行駛利益者負損害賠償責任,故自駕車製造商或因系統被駭導致失去以及支配行駛之地位及行駛利益者,不負運行供用者責任。此外,研究報告亦指出,從《汽車賠償法》立法意旨在於保護和汽車行駛無關之被害者,以及迅速使被害者得到救濟觀之,自動駕駛系統下之自損事故,應仍為《汽車賠償法》保護範圍所及。

何謂「合作專利分類」?

  美國專利商標局(USPTO)與歐洲專利局(EPO)簽署協議,合作開發「以歐洲專利分類系統為基礎,並納入兩局分類實務特點」的共同分類系統:「合作專利分類」(Cooperative Patent Classification, CPC)系統,該系統為全球性的專利文件分類系統。USPTO與EPO為促進專利調合化,積極努力並共同合作建立CPC系統,該系統結合了兩局最好的分類作法,為專利技術文件建立一個共同且為國際間相容的分類系統,供專利審查使用。CPC於2013年1月1日宣布正式啟用,EPO開始使用CPC,不再使用歐洲專利分類(ECLA);2015年1月1日,USPTO正式宣告成功由美國專利分類(USPC)轉換至CPC。目前已有超過45個專利局與超過 25,000名審查人員使用CPC作為檢索工具,使CPC成為國際性的分類標準。

TOP