瑞典最高法院關於維基所設立公共藝術品之照片資料庫之判決

  瑞典最高法院(Högsta domstolen)於2016/04/04 針對維基基金會(Wikimedia Sverige)與瑞典照片藝術著作權團體(Bildkonst Upphovsrätt i Sverige-BUS)之訴訟案,認定維基基金會無權經由網路提供公共藝術品資料庫(Swedish WikiMedia Art Map)予公眾使用。


  本案由瑞典視覺藝術著作權團體於2016/06在瑞典斯德哥爾摩地方法院向維基基金會以侵犯藝術家(konstnärer)對其作品在線上之公眾提供權而提起訴訟。此案爭點在維基未得藝術家之同意前,維基是否可免費提供公共藝術品資料庫供大眾接近使用。因本件訴訟涉及瑞典著作權法24條第1項公共藝術品之轉載重製(24 § Konstverk får avbildas)。瑞典斯德哥爾摩地方法院依民事訴訟法第56章第13條向瑞典最高法院針對此爭議提出判決前置問題(beslut av tingsrätten om hänskjutande enligt 56 kap. 13 § rättegångsbalken)。
 

  瑞典最高法院認為觀光客固然可以對置於公共場所之雕塑品等公共藝術品為攝影,但資料庫是否可無限制使用這些照片則是另一問題。公共藝術品照片資料庫被推定有一定某種程度之商業價值,且不論其是否具商業目的,最高法院認定藝術家有權利去主張此價值。


  維基基金會認為此判決弱化表現自由中之基本元素之視覺自由(the freedom of panorama)。需強調的是,此決定只是針對公共藝術品資料庫之運用,並不影響私人上傳公共藝術品照片至社群媒體之權利。
 

本文同步刊登於TIPS網站(https://www.tips.org.tw
 

相關連結
※ 瑞典最高法院關於維基所設立公共藝術品之照片資料庫之判決, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7542&no=67&tp=1 (最後瀏覽日:2025/12/25)
引註此篇文章
你可能還會想看
歐盟法院對於羅氏和諾華藥廠涉及聯合銷售Lucentis壟斷市場行為,作成先訴裁定

  歐盟法院(Court of Justice of the EU ,CJEU) 於2018年1月23日就Hoffman-La Roche and Others v Autorità Garante della Concorrenzae del Mercato案(Case C-179/16)作出先訴裁定(preliminary ruling)。本案涉及歐盟競爭法和藥品監管體系之間的相互影響。   案例事實為:羅氏藥廠的Avastin,原先為抗癌許可藥物,被臨床發現可用作治療老年性黃斑部病變(AMD),但並未經正式核准用於治療AMD,屬於仿單標示外藥物(off-label drugs)。而Lucentis係諾華藥廠一款獲得正式授權核准,作為治療 AMD的眼內注射藥物。   其中,諾華持有羅氏超過33%的股份,Avastin雖與Lucentis作用機理相似,但Lucentis價格卻相對昂貴,銷售方式由羅氏與諾華合作,諾華可從持股中間接獲得利潤。   兩家藥廠為了影響、降低Avastin的需求量及阻礙其分銷,雙方協議,對外聲稱兩種藥物含有不同活性成分,散布Avastin仿單標示外使用之安全性和有效性存在疑義的不實資訊。   2014年時,義大利競爭法主管機關(Autori tà Garante della Concorrenza e del Mercato, AGCM)認為羅氏和諾華兩大藥廠涉嫌藥品市場壟斷,違反歐盟運作條約(Treaty on the Functioning of the European Union, TFEU)第101(1)條,因而裁罰兩家藥廠。   羅氏和諾華不服裁罰,向義大利Lazio地方行政法院(Regional Administrative Court, Lazio)提起訴訟尋求救濟,遭到駁回;羅氏和諾華繼而向義大利國務委員會(Council of State)提出上訴,義大利國務委員會將此案提交歐盟法院,針對歐盟競爭法的解釋進行先訴裁定。   最後,歐盟法院認為兩藥廠之行為構成藥品市場的限制競爭,違反歐盟運作條約第101條之規定。 法院判決結果認為: 當上市許可藥物(marketing authorization, MA)和仿單標示外藥物皆適用治療同一疾病,只要它們具可替代性和兼容性,並且符合製造和銷售的規定,原則上屬於同一個相關市場。只要滿足其他要件,上市許可藥物並不當然決定相關產品市場的範圍。 非競爭者之間的許可協議可能符合歐盟競爭規則:歐盟法院闡述,這種傳播誤導性資訊的「安排」,目的並非限制任何一方對許可協議的商業自主權,而是為了影響監管機構和醫生等第三方選擇使用Avastin的行為。因此,散播不利於Avastin仿單標示外使用的資訊,此一共同協議,不能被認為是許可協議的附屬部分,係實施協議所必需的。其符合歐盟競爭規則的範圍,作為許可協議中的單獨協議。 雙方協議散布安全誤導性的不實資訊,針對此兩種相互競爭的醫藥產品,可能構成對競爭規則的嚴重違反:諾華與羅氏公司,在科學證據不確定的情形下,聯合對外向歐洲藥品管理局(European Medicines Agency, EMA)、醫療專業人員和公眾宣稱有關使用該仿單標示外藥物將造成不良副作用的誤導性資訊,以減少其對其他產品施加的競爭壓力,構成對「競爭對手」(by object)的限制。尤其令人憂慮的是,企業可能會透過散播資訊來減少藥品本身的競爭壓力,從而誇大使用其他產品將導致不良反應的可能性。

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章

通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)

美國證券交易委員會允許Overstock公司以區塊鏈(Block Chain)技術為基礎發行公司證券

  數位金融時代已然來臨。美國金融證券市場在2015年12月發生一些重大轉變,其中之一為美國證券交易委員會(U.S. Securities and Exchange Commission,下稱SEC)允許Overstock.com公司以區塊鏈技術(Blockchain technology)為基礎透過網路發行公司證券。   區塊鏈技術為一種以分散式結構方式,記錄數據、傳輸及驗證的方法。當有資訊產生時,所有相連電腦會共同驗證該資訊之真實性。驗證該資料具真實性後會寫入區塊鏈,並產生不可竄改的紀錄。   區塊鏈技術特點如下: 一、分散式結構之設計:可達到去中心化效果,以此降低資料遭駭客攻擊或竄改之風險,提升資訊安全。 二、驗證機制:可提供所有參與者共同驗證資料真實性,打造安全可靠之共識環境。 三、P2P機制:可節省繁瑣程序並降低交易成本。   綜合上述三點,區塊鏈技術受到市場極大的關注。為提升資訊安全與降低交易成本及因應數位金融時代,金融業者嘗試將區塊鏈技術應用於股票、債券或是有價證券交易市場,期望可完善金融交易環境。   雖然區塊鏈技術潛在市場龐大,但Overstock公司也在向SEC申請允許以區塊鏈技術發行證券之文件中,指出其選擇將公司訊息儲存在任何人皆可查閱之公開區塊鏈,可能導致個人對其隱私安全的疑慮。即便有此風險,仍認為區塊鏈技術應用於發行證券,將有助完善證券市場交易環境,透過區塊鏈技術,將可紀錄所有交易,從中減少中間商控制市場的空間,並減少賣空之套利行為。   但是,將區塊鏈技術應用於數位金融或許將衍生金融法規相關問題。因為金融法規針對不同類型金融商品,有相關規範管制。若應用區塊鏈技術於相關金融商品,勢必產生相應問題。諸如:股票交易需依據證券交易條例實行,然其中並未設有電子移轉及交易相關規範,若應用區塊鏈技術進行證券交易,主管機關須思考如何規範並控管市場。因此,金融法規將勢必隨之調整以符合數位化趨勢。

日本也有EUA了!新修《藥機法》通過藥物緊急許可制度

日本也有EUA了!新修《藥機法》通過藥物緊急許可制度 資訊工業策進會科技法律研究所 2022年06月13日   去(2021)年12年底日本厚生勞動省發布「緊急時藥物許可制度總結[1]」(緊急時の薬事承認の在り方等に関するとりまとめ)文件,就日本藥物緊急許可制度(緊急承認)進行提案,並建議修法。接著,以該制度為中心之《藥物及醫療器材品質、有效性及安全性確保法》(医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律)(下稱藥機法)修正案,在今(2022)年3月經眾議院通過,4月經參議院通過成立,5月20日公布並即日開始發生效力[2]。主要條文規範在新法第14條之2之2及第23條之2之6之2。 壹、立法背景說明   修法之前,日本藥物上市審查有四種管道:一般許可(通常承認)、先驅審查指定制度(先駆け審査指定制度)、附條件許可(条件付き承認)、特例許可(特例承認)。「一般許可」係無特殊情形下之通常上市管道;「先驅審查指定制度」是針對治療嚴重疾病的劃時代創新藥物所創設之優先審查制度[3];「附條件許可」則是針對有效治療方法少、患者數量少的嚴重疾病的藥物審查制度[4];若遇緊急事件需使用藥物則是走「特例許可」管道使藥品能提早上市[5]。   根據去年日本厚生勞動省之調查[6],在傳染病大流行等類似緊急情況之下,日本當時對於藥品核准的對應方式存有兩大問題。   首先是對應的速度不夠快。在緊急狀況下,對於疫苗及藥物等的優先核准制度,即使是日本當時最快的「特例許可」管道,相較於歐美也較為耗時。以對抗新型冠狀病毒的莫德納疫苗為例,該疫苗在美國取得緊急使用授權(Emergency Use Authorization,下稱EUA)之後,約過了5個月才在日本獲得承認;而新型冠狀病毒的治療藥物Sotrovimab於日本國內的核准也晚於美國4個月[7]。   其二是特別許可的適用對象較窄,「特例許可」管道是為已在國外流通之藥品而設計,因此若是日本藥廠自行研發的疫苗、藥物或是療法,均無法依此管道上市。如日本藥廠塩野義所開發的新型冠狀病毒口服藥,即需要透過附條件許可之制度,或新的緊急許可制度加快上市速度。   鑒於前述原因,日本厚生勞動省參考美國EUA,提出了藥物的「緊急許可制度」。此二制度最大共通特點在於其均非藥品的正式上市制度,通過審查之後僅能在一定期間內上市流通,到期之後原則上應下架[8]。 貳、重點說明   緊急許可制度有四大重點[9],說明如下:   一、發動要件:為防止重大影響國民生命和健康之疾病蔓延,及防止其他健康損害狀況的擴大,有緊急使用之必要,且無使用該藥物以外替代手段時,得申請緊急許可。此處所稱之藥物包括了疫苗、治療藥物、普通藥品、醫療器械等產品。且緊急情況並不限於大規模流行性疾病,核事故、放射性污染、生化攻擊等情況亦適用緊急許可制度。   二、運用標準:在臨床試驗確認安全性的前提下,可以不需要完成有效性的完整試驗,得僅就現有的數據及資訊進行有效性之推定。舉例而言,若在海外進行的大規模驗證臨床研究中獲得了顯著的結果,則以日本受試者為主的臨床研究結果為非必要。   三、核准條件及期限:由於在有效性的階段給予核准,為了確保正確使用核准的藥物,應附上條件以及二年內之期限(有再延長一年之可能)。獲得許可後一定期限內若無法確認有效性,且判斷該醫藥品或器材不適合維持許可狀態時,將撤銷許可。   四、加速特別措施:對GMP檢驗、國家認證、容器包裝等採取特殊措施以加快核准速度。如在申請緊急許可當下,GMP檢驗有實施上困難,可以先暫緩,待核准後再補上檢驗程序。 參、與現存制度差異評析   特例許可是在緊急許可推出之前,在緊急情況下能在短期間內讓藥品上市之方式。特例許可是藥品正式上市流程,而緊急許可是在符合條件後暫時性准許上市,故兩者在範圍、運用基準以及期限等規定上存有明顯差異。   首先在範圍方面,特例許可係為了已在國外流通的醫療用品引進國內而設置,因此日本國內企業自行研發的新疫苗或是新治療藥等,無法透過特例許可上市[10],原則上需要透過一般藥物上市管道,因此新制度對於日本藥廠來說,形同多開闢了一條產品上市的道路。其次,在運用基準方面,特例許可應完整確認安全性及有效性,無法如新制般能僅由現存數據及資料推定該藥物之有效性[11],因此新制可以縮短臨床試驗所花費的時間。最後,由於特例許可為正式之上市許可,僅在簡化一般藥物之審查流程至2-3個月,故其無有效期間之規定[12],而依新制度上市之藥品在有效期間內仍須完成剩下的臨床試驗,否則期限屆至時原則上應下市。 肆、未來展望   由於緊急許可制度剛修法通過,日本國內目前尚未有以此管道核准上市之藥物或疫苗,因此核准程序所花費之時程,能否成功縮短至如美國EUA的三週內尚未可知。目前最有可能以此管道核准上市之藥物為日本藥廠塩野義的新型冠狀病毒口服藥,審查結果預計於7月發表[13],其發展究竟如何,值得我們拭目以待。 [1] 〈緊急時の薬事承認の在り方等に関するとりまとめ〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000873996.pdf(最後瀏覽日:2022/06/12)。 [2] 日本參議院網站,https://www.sangiin.go.jp/japanese/joho1/kousei/gian/208/meisai/m208080208042.htm(最後瀏覽日:2022/06/12)。 [3] 〈先駆的医薬品等指定制度(先駆け審査指定制度)〉,獨立行政法人醫藥品醫療機器總合機構,https://www.pmda.go.jp/review-services/drug-reviews/0002.html (最後瀏覽日:2022/06/27)。 [4] 〈医薬品条件付早期承認制度への対応〉,獨立行政法人醫藥品醫療機器總合機構https://www.pmda.go.jp/review-services/drug-reviews/0045.html (最後瀏覽日:2022/06/27)。 [5] 同前註1。 [6] 同前註1。 [7] 〈緊急時の薬事承認の在り方について〉,厚生勞動省,https://www.mhlw.go.jp/content/11121000/000856077.pdf(最後瀏覽日:2022/06/12)。 [8] 同前註。 [9] 〈令和4年の医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(薬機法)等の一部改正について〉,日本厚生勞動省網站,https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/0000179749_00006.html(最後瀏覽日:2022/06/12)。 [10] 医薬品、医療機器等の品質、有効性及び安全性の確保等に関する法律(昭和三十五年法律第百四十五号)第14條之3第2項。 [11] 同前註4。 [12] 周晨蕙、施雅薰,《科技法律透析》,〈COVID-19疫情下我國藥事法專案核准制度議題-以國際藥物緊急核准上市機制為借鏡〉,第33卷第10期,頁58(2021)。 [13] NHK,〈コロナ飲み薬 塩野義製薬「ゾコーバ」有効性や副作用 承認の可否は〉,2022/06/23,https://www.nhk.or.jp/shutoken/newsup/20220623a.html (最後瀏覽日:2022/06/27)。

TOP