2016年10月27日,FCC依據傳播法案(Communication Act)第222條通過《寬頻用戶隱私保護規則》(Rules to Protect Broadband Consumer Privacy, 下稱2016 Privacy Order)。2016 Privacy Order主要包含以下三點: 選擇加入(Opt-in):當使用或分享消費者之「敏感資訊」,須事先取得消費者明確之同意。「敏感資訊」包括精確的地理定位資訊、財務資訊、健康資訊、孩童資訊、社會安全號碼(Social Security Number, SSN)、網站瀏覽與應用程式使用紀錄,以及通訊內容。 選擇退出(Opt-out):對於符合消費者期待的「非敏感資訊」,除非客戶Opt-out,ISP業者皆能在未取得消費者事先同意之情況下自由使用與分享。例如電子郵件位址與服務介面資訊(service tier information)。 例外:推定客戶會同意之資訊,例如在客戶與ISP業者建立關係後,不須額外取得寬頻服務或計費之同意。 2016 Privacy Order通過後受到ISP業者大力抨擊,尤其是網站瀏覽與應用程式使用紀錄亦須取得消費者事先同意之部分,其認為如此可能扼殺電子商務發展,消費者亦可能被不必要的警示轟炸。由於2016 Privacy Order引起諸多不平,因此通過後半年,美國參議院與眾議院分別於2017年3月投票廢止,總統並於4月3日正式簽署此份國會審查法案(Congressional Review Act)。 廢止《寬頻用戶隱私保護規則》之原因為,消費者之個人資料雖可受到保護,但該規則僅適用於寬頻服務提供者與其他電信供應商,並不包含網站與前端服務(edge services)。是以僅ISP業者受到較嚴厲之管制,其餘網路服務則由FTC管轄,而FTC對隱私權之規範較為寬鬆,因此可能發生提供不同服務的兩家業者使用同一份客戶資料,受到的管制程度卻不同之情形。 贊成2016 Privacy Order之議員與消費者自助組織(consumer-advocacy groups)表示ISP業者應受到較嚴厲之規範,因消費者能輕易在網站間轉換,卻不能輕易更換ISP,且ISP得以取得消費者在所有網站上之瀏覽資料,但如Google與Facebook等大廠雖非ISP業者,卻亦能取得不限於自身網站的客戶瀏覽資料。 由於《寬頻用戶隱私保護規則》已正式廢止,FCC將不得再通過其他相同或實質上相同之規範,對ISP業者之管制回歸《傳播法案》第222條,亦即,對於網站瀏覽與應用程式使用紀錄之使用或分享,不須取得客戶之事先同意。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
OECD發布《數位化推進資料治理以促進增長和福祉》、《資料治理政策制定之數位化指南》報告2023年5、6月經濟合作暨發展組織(Organisation for Economic Cooperation and Development, OECD)在邁向數位化計畫(Going digital Project)下陸續公布53個國家地區科學技術創新政策(science, technology and innovation policy)指標。OECD另一方面也提供許多政策工具供各政府參考,如2022年12月發布《數位化推進資料治理以促進增長和福祉》(Going Digital to Advance Data Governance for Growth and Well-being),並出版《資料治理政策制定之數位化指南》(Going Digital Guide to Data Governance Policy Making),協助應對轉型為數位治理時的潛在益處與風險。 《數位化推進資料治理以促進增長和福祉》指出,數位工具發展使資料蒐集、處理的效能大幅增加,邊際成本快速下降,為經濟、社會注入新驅動力。OECD觀察到COVID-19疫情危機中,各國政府藉多樣的資料有效追蹤疾病並做出相應對策;然而,也出現資料治理不當案例,如有勞動中介機構不慎在資料應用時加深性別勞動的不平等。因此,資料成為治理的戰略資產同時也需詳加了解資料多樣化的特性,在資料跨領域產製、流通與利用的過程中一併考量其益處與風險。 《資料治理政策制定之數位化指南》則點出三個發現,並提供相應策略做為各國政府治理參考。第一,關切資料開放同步產生的益處與風險,建議應確立風險管理的文化並建置透明且開放的資料生態系,以增加使用者的能動性,俾利人們自覺主動利用資料。其次,治理框架應平衡生態系中利害交疊的人民、企業團體、政府各部門等,藉契約範本、行為準則等機制確保決策各環節中利害關係人的參與機會和框架的一致性。第三,資料的邊際成本雖一再降低,然而進入門檻、後續管理的負擔仍重,政府應持續激勵資料的基礎建設投資,促進市場競爭並解決後進者的阻礙。
IEA報告對合乎能源效率的建築外殼提供政策建議