何謂「企業實證特例制度」?

  企業實證特例制度規定於日本產業競爭力強化法第8條、第10條、第14條及第15條,在企業或任何事業團體有進行新事業活動(引進新商品或服務之開發或生產、新商品或服務之導入)之需要時,若現行法規上有滯礙難行之處,則可提出創設新規制措施之申請,藉以排除某些法令之限制,使新事業活動得以進行。

  企業實證特例制度分為兩階段,首先由欲實施新事業活動者向事業主管機關提出申請,而事業主管機關將會與法規主管機關討論後,在安全性得到確保之情形下,由事業主管機關同意創設新規制措施。第二階段則需提出新事業活動計畫申請核准,經核准後便得在一定期間內於一定地區進行新事業活動。

  新事業活動計畫備核准後,事業團體得進行新事業之活動,其需於各事業年度終了後3個月內向事業主管機關提出報告,就新事業活動之進行情形(包含新事業活動目標達成程度、新特例措施施形狀況、法規所要求之安全性目的之確保措施…等事項)為報告。法規主管機關亦會綜合新事業活動之施形狀況、國外相關法制情形以及技術進步等等情形,決定是否進行修法。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「企業實證特例制度」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7581&no=67&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
運用AI工具協助管理智慧財產組合(IP Portfolio)之方式

美國實務界律師2023年6月9日撰文指出,人工智慧(artificial intelligence,簡稱AI)將對智慧財產法律和策略帶來改變,大部分企業熟悉的改變是目前仍有爭議的法律問題—由AI工具產生的發明創造是否為專利或著作權適格的保護標的。但除此之外,AI工具對於創建和管理智慧財產組合(IP Portfolio)的方式也已發生改變,並介紹以下五種利用AI工具協助管理智慧財產組合之方式。 1.簡化先前技術之檢索 無論是評估新產品的可專利性、評估競爭對手之智慧財產權之相關風險、抑或是回應侵權索賠,企業均須了解特定領域之先前技術,因應此需求,全球已有大量公司提供先前技術檢索服務,惟AI工具的出現使得企業可自行進行先前技術檢索。例如知名的文件審查平台Relativity創造了Relativity Patents,使用者輸入專利號碼等特定關鍵字即可進行先前技術檢索;美國專利商標局亦為了審查官開發一種AI工具,提升其確認先前技術之準確性及效率。 2.協助專利申請文件撰寫 對於專利申請人而言,可使用AI工具協助草擬專利申請範圍,有些企業甚至會運用AI工具自動化撰寫專利申請文件,惟使用AI工具撰寫專利申請文件時,應留意提供AI工具的資料是否會保密,抑或有向第三人提供之風險。此外,AI工具撰寫之內容建議仍須雙重確認內容正確性及適當性,如引用來源及內容是否正確。 3.改善商標維權能力 企業可使用AI工具協助監控潛在的侵權及仿冒產品,有鑒於現今網站及社群媒體仍有大量未經商標授權的賣家存在,AI工具可作為審查貼文及識別商標侵權案件之工具,相較於傳統的人工審查可更有效率。 4.協助商標檢索作業 於美國、澳洲、歐盟、中國,甚至世界智慧財產組織導入AI工具協助審查官進行商標審查,包括以關鍵字及影像標記之搜尋功能,此一工具不僅可簡化商標申請和註冊審查程序與時間,亦有部分國家提供使用者自行檢索之功能,使企業可進行更快速、有效率之商標檢索,使其於品牌保護策略上節省不必要之時間及金錢。 5.支持策略性專利組合管理 AI工具亦可協助專利組合管理,包括最廣的專利範圍、評估是否需繼續維護專利、或是評估擬收購專利之價值,以AI工具協助評估以上事項,雖無法完全取代人工進行策略評估,惟可顯著減少勞動力支出。 AI工具改變了智慧財產組合創建及管理之方式,雖然AI工具不能完全承擔管理智慧財產權組合之職責,但AI工具在專利/商標檢索、專利申請文件撰寫、專利權評估、商標維權等方面已可大量減少人力及管理成本,有助於企業智慧財產組合管理,惟企業及使用者須留意使用AI工具的資料管理問題,以避免機密資訊遭到外洩。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

歐洲藥物管理局(European Medicines Agency,簡稱EMA)發佈針對準備與審查產品特性摘要(summaries of product characteristics,簡稱SmPCs)的指導方針

  EMA近日針對醫藥公司,在其欲申請人體藥物上市核准的申請文件中,針對如何準備與審查產品特性摘要之文件,提供醫藥公司相關的指導方針。   產品特性摘要不僅是醫藥公司之新藥物在向歐盟申請上市核准時所必須提供的重要文件,也是健康照護專業人員在獲知如何有效並安全使用藥物時的基本資訊來源。產品特性摘要在藥品生命週期存續時必須定時保持更新,以確保無藥物效用性與安全性疑慮的新問題發生;同時,其也是在藥物包裝上所必須含有的基本資訊,以確保藥物服用者能對其所服用的藥物有更多的了解和進行各類風險評估。   產品特性摘要文件,主要係依據歐盟2001/83/EC號指令第8(3)(j)條與歐盟第726/2004號法規第6(1)條之要求而提供。前述法規要求醫藥公司在提出藥物上市許可之申請時,必須遵循歐盟2001/83/EC號指令第11條之規定,附加產品特性摘要於申請文件,以供主管機關作為申請核駁之依據。在EMA針對產品特性摘要所提供的指導方針中,主要係以簡報與影片的方式,來教導醫藥公司如何在產品特性摘要的各個項目中,提供有關申請藥物更為完整與細部的背景資訊。其中,有關於解釋如何完成治療指示(therapeutic indication)與藥物藥效成分(pharmacodynamic properties of a medicine)之項目,於EMA的指導方針中,亦以明確的影片指導來協助醫藥公司提供高品質的產品特性摘要內容。   有鑑於治療人體疾病之藥物,對於人類生理與心理層面攸關重大,如何要求醫藥公司在提出人體藥物上市許可之申請時,能提供藥物完整的背景資訊,以確保從事健康照護之人員以及藥物服用者,完全了解藥物使用方式、效用與風險,則是主管機關無從推卸的責任。觀察EMA針對人體藥物之產品特性摘要製作出完整的指導方針,或許我國衛生機關也可效仿該種方式,來提供國內醫藥公司在提出藥物上市申請時之參考,以確保各項資訊透明並保護藥物使用者在「知」方面的權益。

歐盟執委會將修正ePrivacy指令

ePrivacy指令修正背景   原資料保護指令將於2018年由一般資料保護規則所取代,在此一背景下,電子隱私指令除補充資料保護指令外,亦訂定關於在電子通訊部門的個人資料處理的具體規則。具體作法,如在利用流量和位置資訊於商業目的之前,應徵得用戶的同意。在ePrivacy指令未特別規定的適用對象,將由資料保護指令(以及未來的GDPR)所涵蓋。如,個人的權利:獲得其個人資料的使用,修改或刪除的權利。   歐盟執委會為進行ePrivacy指令(Richtlinie über den Datenschutz in der elektronischen Kommunikation)改革,於2016年8月4日提出意見徵詢摘要報告,檢討修正ePrivacy指令時著重的的幾個標的: (1)確保ePrivacy規則與未來的一般資料保護規則之間的一致性。亦即評估現有規定是否存在任何重複、冗餘、不一致或不必要的複雜情況。(如個人資料洩漏時的通知) (2)指令僅適用於傳統的電信供應商,而在必要時應該以新市場和技術的現實的眼光,重行評估更新ePrivacy規則。對於已成為電子通信行業新興創新的市場參與者,如:提供即時通訊和語音通話(也稱為“OTT供應商”),由於目前不需要遵守ePrivacy指令主要規定,而應納入修正對象。 (3)加強整個歐盟通訊的安全性和保密性。ePrivacy指令在規範上,確保用戶的設備免受侵入、確保通信的安全性和保密性。本指令第5條第3項,儲存資訊、或近用已存儲在用戶設備之資訊,需得其的同意。該條款的有效性已有爭論,因為新的追踪技術,如:指紋識別設備可能無法被現有的規則所涵攝。最後,有認需得同意的例外規定列表,有必要延伸到對資訊之其他非侵入性的儲存/近用:如網路分析等。這些都是應予以仔細評價和檢視之對象。 公眾諮詢摘要報告內容   經過4月13日到7月5日的公眾諮詢,歐盟執委會於8月4日提出報告。   諮詢意見主要來自德(25.9%)、英(14.3%)、比(10%)、法(7.1%)的回覆。   一、是否有必要在電子通訊部門訂定隱私特別規定? 市民與公民團體咸認有必要在電子通訊部門,甚至流量資料和位址資訊也應該訂定新規(83%)、企業則認為無甚需要,只有在秘密性規則(31%)與流量資料(26%)有需要訂定;主管機關則咸認需要特別規定。   二、現行指令是否已足達成其立法目的?76%市民和公民團體認為未達立法目的,理由如下: ePrivacy指令的範圍太狹小,不包括即時訊息、語音通話(VoIP)和電子郵件應用服務。 規範太模糊,導致會員國之間適用結果和保護程度的差異、不一致。 法律遵循的程度展法程度太差。   三、是否應為新通訊服務訂定新規?   76%市民和公民團體認為適用範圍應該涵蓋到OTT上。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP