何謂「國家科學技術發展計畫」?

  「國家科學技術發展計畫」為政府考量國家發展方向、社會需求情形以及區域均衡發展,而擬定之國家科學技術政策與推動科學技術研究發展之依據。依照《科學技術基本法》第10條之規定,國家科學技術發展計畫之訂定,應參酌中央研究院、科學技術研究部門、產業部門及相關社會團體之意見,並經全國科學技術會議討論後,由行政院核定。

  全國科學技術會議每四年召開一次,最近一次會議為2013年的「第九次全國科技會議」,該次會議通過了民國102-105年的「國家科學技術發展計畫」,針對我國科技發展提出7項目標、27項策略及58項重要措施。7項目標包括:提升臺灣的學研地位、做好臺灣的智財布局、推動臺灣永續發展、銜接上游學研與下游產業、推動由上而下的科技計畫、提升臺灣科技產業創新動能、解決臺灣的科技人才危機等。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「國家科學技術發展計畫」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7582&no=67&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
敏感科技保護

  「敏感科技」的普遍定義,係指若流出境外,將損害特定國家之安全或其整體經濟競爭優勢,具關鍵性或敏感性的高科技研發成果或資料,在部分法制政策與公眾論述中,亦被稱為關鍵技術或核心科技等。基此,保護敏感科技、避免相關資訊洩漏於國外的制度性目的,在於藉由維持關鍵技術帶來的科技優勢,保護持有該項科技之國家的國家安全與整體經濟競爭力。   各國立法例針對敏感科技建立的技術保護制度框架,多採分散型立法的模式,亦即,保護敏感科技不致外流的管制規範,分別存在於數個不同領域的法律或行政命令當中。這些法令基本上可區分成五個類型,分別為國家機密保護,貨物(技術)之出口管制、外國投資審查機制、政府資助研發成果保護措施、以及營業秘密保護法制,而我國法亦是採取這種立法架構。目前世界主要先進國家當中,有針對敏感科技保護議題設立專法者,則屬韓國的「防止產業技術外流及產業技術保護法」,由產業技術保護委員會作為主管機關,依法指定「國家核心科技」,但為避免管制措施造成自由市場經濟的過度限制,故該法規範指定應在必要的最小限度內為之。

美國確立2305-2360MHz區間行動寬頻服務發展規範

  自2001年以來,美國長期無法解決2305-2360MHz頻段上,相鄰之衛星數位音訊廣播服務(Satellite Digital Audio Radio Service, SDARS)業者與無線通訊服務(Wireless Communications Service,WCS)業者雙方相互干擾之疑慮。此一爭議在2012年10月17日美國聯邦通訊委員會(FCC)發布FCC 12-130再審查命令(Order on Reconsideration FCC 12-130,下稱12-130命令)後獲得解決。   使用頻段位於2305-2320MHz與2345-2360MHz之無線通訊服務(WCS)與位於2320-2345MHz頻段的衛星數位音訊廣播服務(SDARS)由於個別之訊號傳輸技術差異大,並且長久以來無法在干擾處理的議題上達成共識,而抑制了無線通訊服務(WCS)於該頻譜上之發展。為實現WCS業者得於該頻段發展行動寬頻業務之承諾,並確保美國大眾能繼續享有高品質的衛星廣播服務,FCC本次針對2010年所頒布之命令(FCC10-82)進行再次修訂與檢討 ,以確立位於2.3GHz頻帶WCS所屬之頻段得發展新興寬頻服務,並促進SDARS地面中繼起器(terrestrial repeaters)之佈署及運作更加彈性化。   12-130命令之頒布,可視為WCS頻帶發展的重要里程碑。該命令除了確保相鄰頻帶之衛星廣播服務(satellite radio)、航空行動遙測技術(aeronautical mobile telemetry)以及位於美國加州所佈署之深空網路(deep space network)地面站其訊號不受干擾以外,FCC更透過制訂各項參數與管理規則,一方面降低WCS營運時對於SDARS接收者可能產生的潛在干擾,另一方面則幫助位於2.3GHz的WCS業者有能力提供固定或行動寬頻服務,以促進WCS業者與SDARS業者和諧共存。   對於FCC最後決定採用修改管制規範方式釋出該頻段以發展行動寬頻服務之舉,FCC主席Genachowski表示,除有助於鞏固美國身為全球發展LTE技術領導者之地位外,更認為命令中的管制障礙排除模式可幫助未來其他頻段的清理或移頻,增加頻譜使用彈性,並有助於達成國家寬頻計畫(National Broadband Plan’s)所設定之「2015年釋出300MHz總頻寬」、「2020年釋出500MHz總頻寬」目標。

簡介美國「消費者網路視訊選擇法」草案

美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

TOP