何謂「TLO」?

  「TLO」係「技術移轉機關(Technology Licensing Organization)」之簡稱,專指大學研究成果申請專利後,將該等技術移轉給企業等之機關,如同產學間的仲介角色。

  日本於平成10年(西元1998年)5月6日通過「促進大學等實施技術研發成果移轉給民間企業法(簡稱大學等技術移轉促進法或TLO法)」,目的在於將大學之研究成果技轉給民間企業,促進研究成果之實用化。

  在承認TLO存在之同時,日本做了以下法令之配套:依據TLO法第8條,實施特定大學技術移轉之事業期間,第1年到第10年之授權金及專利申請審查手續費用減免1/2、產業競爭力強化法第19規定,若國家委託之研發成果,歸屬於受託者時,該研發成果之移轉授權不須經國家之承認、同時大學法人法第22條允許國立大學得為出資。同時TLO法亦承認若中小企業透過TLO取得研究成果之授權時,得降低中小企業投資育成株式会社支出資要件。

本文為「經濟部產業技術司科技專案成果」

你可能會想參加
※ 何謂「TLO」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7593&no=67&tp=1 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
美國參議員建議將提供位置資訊服務之行動裝置與應用軟體服務平台納入規範

  2009年美國司法部特別報導,美國每年大約有26,000人為受全球定位系統(Global Positioning System, GPS, 一般稱作衛星導航系統)追蹤的受害者,其中也包括手機使用者。2010年4月,爆發Apple iPhone和Google Android 智慧型手機在當事人不知情的情況下,蒐集手機的位置資訊;更甚者,即使在當事人沒有使用定位應用程式時,仍繼續蒐集其位置資訊,而當事人卻無法拒絕蒐集。對此,手機公司反映,其蒐集的位置資訊行為係利用發射台與無線網路點,協助手機使用者更快速的計算與確認其位置,以提供更良善的定位服務。   美國參議員Al Franken 與Richard Blumenthal對於此議題非常關切,Franken參議員指出,1986年所通過的「電子通訊隱私法(Electronic Comunications Privacy Act of 1986)已無法因應現今網際網路普遍使用。其中「自願揭露客戶通訊或記錄」之規定 (18 U.S.C. §2702 Voluntary disclosure of customer communication or records)更是替手機公司、應用程式業者,與提供無線上網的電信業者開了一個漏洞,允許業者在當事人不知情的情況下,進行定位資訊的蒐集,或與第三人分享位置資訊。   參議員Al Franken 與Richard Blumenthal遂於2011年6月15日提出「2011位置隱私保護法案(Location Privacy Protection Act of 2011)」,提議要求提供位置資訊服務功能的行動裝置製造商,與軟體平台,在蒐集當事人位置資訊,以及與第三人分享位置資訊時,必須先行告知當事人,並取得當事人的同意後,才可進行蒐集與分享。目前該法案至6月16日為止已經過二讀,並提交到司法委員會。   不過,「位置隱私保護法案」僅作告知當事人並取得同意低度要求,另一目前也正在審議的 「地理位置隱私與監督法案(Geological Privay and Survillance (GPS) Act)」,更進一步提供執法單位或政府蒐集與使用定位資訊的指引規範。也有提案對於電子通訊隱私法,必須要因應資通訊科技的應用,為相對應的增修。

FCC將電力線寬頻上網(BPL, Broadband over Power Line)服務分類為資訊服務

  FCC經過討論與投票,正式發佈命令將電力線寬頻上網服務分類為跨州資訊服務(interstate information service),而非電信服務,其他寬頻上網科技包括DSL、有線電纜線數據機寬頻上網亦被FCC分類為資訊服務。   過去幾年來,FCC一直大力支持電力線寬頻上網服務,期望電力線寬頻上網服務可以進入寬頻服務市場,與DSL和有線電視纜線數據機寬頻上網服務競爭,以增加寬頻服務市場之競爭,提高美國之寬頻普及率。而就此次所發佈之命令,FCC認為,將電力線寬頻上網分類為資訊服務將可使電力線寬頻上網服務受到較低的管制,有助於達成隨時隨地提供所有美國民眾寬頻接取之目標。其次,FCC在數位匯流時代之管制乃是期望能對於各種不同技術之寬頻接取平台給予一致的管制措施,並且對於相同之服務採取相同的管制方式。基於上述原因,FCC此次將電力線寬頻上網分類為資訊服務並不讓人感到意外。   FCC主席Kevin J. Martin進一步在其聲明中表示,雖然目前電力線寬頻上網人口並不多,然在2005年其成長率卻將近200%,顯見電力線寬頻上網服務之市場潛力不容忽視,將可幫助達成美國總統定下於2007年底前隨時隨地提供全國民眾寬頻網路接取之目標。

對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性

.Pindent{text-indent: 2em;} .Noindent{margin-left: 22px;} .NoPindent{text-indent: 2em; margin-left: 38px;} .No2indent{margin-left: 54px;} .No2Pindent{text-indent: 2em; margin-left: 54px} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 對AI下達複雜、反復修改指令不算創作行為? —美國著作權局發布AI著作權報告第2部分:可受著作權保護性 資訊工業策進會科技法律研究所 2025年02月10日 由於生成式AI是根據使用者輸入的提示或稱指令(prompts),依機率分布推算生成出最有可能出現的結果,因此有人戲稱AI在每次生成時都是在隨機進行「擲骰子」,即便相同的提示也可能會得到有差異的輸出結果。為應對AI回應的不確定性和多樣性,如何下達提示,有效使用AI,為必須學習的課題。因此,有人說訓練不了人工智慧?我們可以訓練自己,但用心思考精準有效指令,費心對AI生成結果進行反復修改,就能取得著作權保護嗎?美國著作權局提出的看法,或許與大家的期待不同。 壹、事件摘要 美國著作權局今(2025)年1月發布AI著作權報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[1]。為幫助評估AI著作領域的立法或監管措施是否必要,該局於2023年8月即發布「著作權與人工智慧議題徵詢通知(Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence)」,對外尋求對包括涉及使用受著作權保護的作品來訓練AI模型的問題、適當的透明度與揭露程度受著作權保護的作品的使用以及AI生成內容的法律定位等問題的意見[2]。在分析AI引發的著作權法與政策問題的意見徵詢結果後,美國著作權局於2024年7月31日,以數位複製物(digital replicas)主題,發布「著作權與人工智慧分析人工智慧引發的著作權法和政策議題」(Copyright and Artificial Intelligence analyzes copyright law and policy issues raised by artificial intelligence)報告的第1部分[3],並隨後於今(2025)年1月發布報告的「第2部分:可受著作權保護性(Part 2: Copyrightability)」[4]。 此報告指出現有的法律原則可根據個案判斷是否具有足夠的人為貢獻,有足夠的彈性足以解決關於AI生成內容是否具有著作權的問題,並不需要修法;當人工智慧被用作工具,且人類能夠決定作品的表達元素時,對AI生成結果的創意選擇、協調或安排,以及對生成結果的創意修改,都可獲得著作權保護;但目前使用者即使給予AI詳細的提示,也無法控制AI如何生成內容,不足以使其成為「作者」;著作保護仍須以人為創意投入,既有法令已足以激勵AI發展,沒有理由為AI生成的內容提供額外的著作權或特殊權利保護。 貳、重點說明 一、AI系統的輸出存在不可控制性[5] 當前生成式AI系統的輸出可能包括未指定的內容,在有數十億個參數的模型構建的複雜AI系統下,特定提示或其他輸入對於AI生成內容的影響存在不確定性,即使是專家研究人員在理解或預測特定模型行為的能力方面也受到限制。不僅AI生成的內容會因請求而異,而且即使具有相同的提示也是難以預測的,即使有AI系統例如Midjourney允許使用者控制生成一致的結果,在重複相同的提示時收到幾乎相同的圖像,然而即使如此也無法保證完美的一致性。 二、有辛勤努力、指示建議不等於有創造性貢獻 (一)無法僅因時間和努力而獲得著作權保護,它需要原創性 (originality),無論原創性有多麼低微 美國的著作權保護限於人類的創作(human authorship) 沒有任何法院承認非人類創造(non-human creation)的著作權。當然在使用AI的大多數情況下,人類將參與創作過程(creation process),並且在他們的貢獻符合創作資格的範圍時,能使其作品具有著作權。美國上訴法院(Supreme Court)明確表示,需要的是原創性 (originality),而不僅僅是時間和努力。在「Feist Publications, Inc. v. Rural Telephone Service Co.」案中,法院否定僅憑「血汗」(sweat of the brow)就足以獲得著作權保護的主張,但法院也認為絕大多數作品都很容易達到標準,因為所需的創造力水平極低;即使是很小的量、無論多麼粗糙、卑微或顯而易見都無妨(no matter how crude, humble or obvious’ it might be.)[6]。 (二)使用機器作為工具並不會否定著作權保護,如果作品已包含足夠的人類創作表達元素(human-authored expressive elements) 對於AI工具的使用是否影響著作權保護,美國著作權局提及在「Burrow-Giles Lithographic Co. v. Sarony」案中,法院將「作者」定義為「任何事物起源的人、創始人、製造者、完成科學或文學作品的人。(he to whom anything owes its origin; originator; maker; one who completes a work of science or literature.)」。法院確定了即使是使用照相機,攝影師也有許多創造性貢獻,包括將主題置於相機前,選擇和安排服裝、窗簾與其他各種配件、安排主題以呈現優雅的輪廓,以及喚起其所需的表情[7]。因此能否受保護的重點不在於有無使用工具,而是創造性投入的有無。 (三)「作者」必須是實際創作作品,即將想法轉化為有形呈現的表達的人,不包括只是提供詳細的建議和指示或做無實質改變轉換的人 美國著作權局在報告中指出,上訴法院在「Community for Creative Non-Violence v. Reid, "CCNV"」案中,認為:繪製設計草圖和以有形的表達媒介實現創意,使藝術家成為作者。該案的哥倫比亞特區巡迴法院明確表示,委託雕塑並提供詳細的建議與指示是不夠的,因為此類貢獻構成不受保護的想法,其不能因此成為雕塑的共同作者。而第三巡迴上訴法院在「Andrien v. Southern Ocean County Chamber of Commerce」案中, 認為原告「明確指示了副本的準備工作的具體細節」,因此「編譯只需要簡單的轉錄即可實現最終的有形形式」。因為印刷商「沒有實質改變原告的原始表達(original expression)」,法院裁定原告是「作者」[8]。 因此,該局認為儘管人工智慧生成內容不能被視為使用者與人工智慧系統的共同作品(joint work),但對於是否貢獻足夠的表達以被視為作者,提供有用的類比—僅僅向作者(AI)描述委託作品應該做什麼或看起來像什麼的人,並不是著作權法意義上的共同作者。 三、AI的創作輔助使用 美國著作權局同意,使用人工智慧作為輔助創作作品的工具與使用人工智慧作為人類創造力的替代品之間存在重要區別。雖然增強人類表達的輔助使用不會限制著作權保護,但認為需要進一步分析下列三種使用方式的差異: (1)指示人工智慧系統產生輸出的提示(prompts); (2)可以在人工智慧生成內容中感知到的表達性輸入(expressive inputs) (3)對人工智慧生成內容進行修改或安排(modifications or arrangements)。 (一)指示人工智慧系統產生輸出的提示(prompts) 由於欠缺對生成結果的控制能力,使用者即使輸入複雜的提示指令亦無法讓其成為「作者」[9]。提示本質上是傳達不受保護的思想,雖然高度詳細的提示可以包含使用者所需的表達元素,但目前的AI技術無法僅靠提示即能給予使用者足夠的人工控制,所以AI 系統的使用者無法成為生成內容的「作者」。雖然在輸入提示可以被視為類似於向受委託創作的藝術家提供指導,但在人與人之間的合作,委託者能夠監督、指導與理解受委託的人類藝術家的貢獻,但這情況目前不存在於人與AI的合作。或許將來可允許使用者對AI的生成內容取得完全的控制權,讓AI的貢獻變成固定或機械化(rote or mechanical)。 由於提示與結果輸出之間的差距,以及相同的提示可以生成多個不同生成內容的事實,進一步表明使用者缺乏對將他們想法轉換為固定表達的控制。而反覆修改提示不會改變、也無法為取得著作權提供足夠的依據,因為著作權保護的是作者身份,而不是辛勤工作。而且美國著作權局認為輸入修改後的提示與輸入單個提示在作用上似乎沒有實質性區別,對過程的控制程度都沒有改變。 不過,有些評論意見舉自然攝影作品做類比,認為即使攝影家無法控制野生動物何時進入畫面,這些作品也可能有資格獲得著作權保護。但美國著作權局認為,這與AI生成不同—攝影家的創作過程並沒有結束於他對作品的想法,其在照相機中控制角度、位置、速度和曝光的選擇,且可能進行作品的後製調修。該局指出「從(AI系統)提供的選項(生成結果)中進行選擇」不能被視為受著作權保護的作者身份, 因為「單一輸出的選擇本身並不是一種創造性的行為」。但該局也表示有時提示可以充分控制AI生成內容中的表達元素,如果AI技術進一步為使用者提供表達元素的更多控制,則結論可能會不同。 (二)富有表現力的輸入(Expressive Inputs)[10]與純粹指令不同 目前AI 系統接受以文本、圖像、音訊、視頻或這些內容形式的輸入,而可以將輸入保留成生成內容的一部分,例如修改或翻譯受著作權保護的作品。這類型的輸入,雖然亦可視為不同形式的提示,但與僅僅是傳達預期結果的提示不同。它所給的不僅是一個概念,更重要的是它限制了AI生成內容的「自主性」。因此可能提供了「更具說服力的人工干預」,而不是簡單的「將提示應用於未知的起點」。美國著作權局認為一個人輸入自己受著作權保護的作品,如果該作品在生成的內容中是可察覺的(perceptible),那麼他至少是該部分生成內容的「作者」。此類 AI 生成輸出的著作權將涵蓋可察覺的人類表達,包括可能涵蓋到作者對作品素材(material)的選擇、協調和安排。 (三)修改或安排(Arranging)AI生成的內容仍可受保護[11] 美國著作權局於報告中指出,使用 AI 生成內容通常是一個初始或中間步驟,如同其AI 註冊指引的說明—「人類可以以足夠創造性的方式選擇或安排 AI 生成的內容,以使最終作品整體構成一個作者的原創作品(the resulting work as a whole constitutes an original work of authorship)」。人類可以藉由修改AI生成的內容,使其達到符合著作權保護標準的程度,如果人類作者以創造性的方式選擇、協調和安排 AI 生成的內容,應該能夠主張著作權。例如:Midjourney 提供「Vary Region and Remix Prompting」,允許使用者使用提示來指定生成圖像的區域。美國著作權局認為此類可以讓使用者控制各個創意元素的選擇與放置的修改,是否達到最低原創性標準雖將取決於具體個案情況。但其認為就生成的內容位置可控制的案例,與純粹提示(prompts alone)情況不同,生成的內容應該受著作權保護。 參、事件評析 在美國著作權局公布其該報告之後,有網路媒體[12]以「美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有」的標題,詮釋該報告的主旨。確實美國著作權局於該報告中,特別指出下達複雜與反復的提示,並不會影響著作權保護的取得與否的判斷。但關鍵點不在於提示本身,而是對AI生成結果的「可控制」(或可說是AI對生成結果的自主)程度。 對於AI生成結果的著作權保護,經濟部智慧財產局曾以電子郵件1070420號函指出:「著作必須係以自然人或法人為權利義務主體的情形下,其所為的創作始有可能受到著作權的保護。據了解,AI(人工智慧)是指由人類製造出來的機器所表現出來的智慧成果,由於AI並非自然人或法人,其創作完成之智慧成果,非屬著作權法保護的著作,原則上無法享有著作權。但若其實驗成果係由自然人或法人具有創作的參與,機器人分析僅是『單純機械式的被操作』,則該成果之表達的著作權由該自然人或法人享有。」,但何謂「單純機械式的被操作」?以複雜與反復的提示再擇取AI符合所需的AI修改結果,是否屬之?在目前AI工具朝向「自動化」發展的趨勢下,使用者下達提示後,多只須被動的對單一的生成結果,決定是否接受或重新下達指令,使用者只是以指令提出需求,實際的「創作行為」主體其實是AI而非人類。因此,美國著作權局於此報告中更進一步的說明使用者即使有複雜與反復的提示且有意的選擇特定結果,並不能就認定為「對結果有控制權」的創作。必須其結果可為使用者主導、控制,而非被動決定是否接受。 相對而言,在創作的保護實務上,美國著作權局告訴我們的是,人類仍然可以藉由在使用過程提高對AI生成結果的控制程度,以及生成內容的後製,使結果符合著作權保護標準。AI使用者應該盡量使用有提供具體修改控制功能的AI工具,只要有人為的事後修改,或使用過程中能具體主導AI生成的結果,我們仍然可以透過複雜與反復的提示AI,取得受著作權保護的生成結果。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 2: Copyrightability, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-2-Copyrightability-Report.pdf [2]US Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last visited Feb. 10, 2025). [3]US Copyright Office, Copyright Office Releases Part 1 of Artificial Intelligence Report, Recommends Federal Digital Replica Law, https://www.copyright.gov/newsnet/2024/1048.html (last visited Feb. 10, 2025). [4]U.S. Copyright Office Copyright and Artificial Intelligence, supra note 1. [5]詳前註1,頁5~7。 [6]詳註1,頁8。 [7]詳註1,頁9。 [8]詳註1,頁9。 [9]詳註1,頁18~21。 [10]詳註1,頁22~24。 [11]詳註1,頁24~27。 [12]電腦王,美國著作權局定調:光靠提示詞的純AI生成圖片無法享有著作權保護,無論你下多複雜的提示詞都沒有,https://www.techbang.com/posts/121184-the-us-copyright-office-has-set-the-tone-that-purely(最後瀏覽日:2025/02/10)。

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢

G7第四屆資料保護與隱私圓桌會議揭示隱私保護新趨勢 資訊工業策進會科技法律研究所 2025年03月10日 七大工業國組織(Group of Seven,下稱G7)於2024年10月10日至11日在義大利羅馬舉辦第四屆資料保護與隱私機構圓桌會議(Data Protection and Privacy Authorities Roundtable,下稱圓桌會議),並發布「G7 DPAs公報:資料時代的隱私」(G7 DPAs’ Communiqué: Privacy in the age of data,下稱公報)[1],特別聚焦於人工智慧(AI)技術對隱私與資料保護的影響。 壹、緣起 由美國、德國、英國、法國、義大利、加拿大與日本的隱私主管機關(Data Protection and Privacy Authorities, DPAs)組成本次圓桌會議,針對數位社會中資料保護與隱私相關議題進行討論,涵蓋「基於信任的資料自由流通」(Data Free Flow with Trust, DFFT)、新興技術(Emerging technologies)、跨境執法合作(Enforcement cooperation)等三大議題。 本次公報重申,在資通訊技術主導的社會發展背景下,應以高標準來審視資料隱私,從而保障個人權益。而DPAs作為AI治理領域的關鍵角色,應確保AI技術的開發和應用既有效且負責任,同時在促進大眾對於涉及隱私與資料保護的AI技術認識與理解方面發揮重要作用[2]。此外,公報亦強調DPAs與歐盟理事會(Council of Europe, CoE)、經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)、亞太隱私機構(Asia Pacific Privacy Authorities, APPA)、全球隱私執行網路(Global Privacy Enforcement Network, GPEN)及全球隱私大會(Global Privacy Assembly, GPA)等國際論壇合作的重要性,並期望在推動資料保護與建立可信賴的AI技術方面作出貢獻[3]。 貳、重點說明 基於上述公報意旨,本次圓桌會議上通過《關於促進可信賴AI的資料保護機構角色的聲明》(Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI)[4]、《關於AI與兒童的聲明》(Statement on AI and Children)[5]、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》(Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions)[6],分別說明重點如下: 一、《關於促進可信賴AI的資料保護機構角色的聲明》 繼2023年第三屆圓桌會議通過《關於生成式AI聲明》(Statement on Generative AI)[7]後,本次圓桌會議再次通過《關於促進可信賴AI的資料保護機構角色的聲明》,旨在確立管理AI技術對資料保護與隱私風險的基本原則。G7 DPAs強調許多AI技術依賴個人資料的運用,這可能引發對個人偏見及歧視、不公平等問題。此外,本聲明中還表達了擔憂對這些問題可能透過深度偽造(Deepfake)技術及假訊息擴散,進一步對社會造成更廣泛的不良影響[8]。 基於上述考量,本聲明提出以下原則,納入G7 DPAs組織管理的核心方針[9]: 1. 以人為本的方法:G7 DPAs應透過資料保護來維護個人權利與自由,並在AI技術中提供以人權為核心的觀點。 2. 現有原則的適用:G7 DPAs應審視公平性、問責性、透明性和安全性等AI治理的核心原則,並確保其適用於AI相關框架。 3. AI核心要素的監督:G7 DPAs應從專業視角出發,監督AI的開發與運作,確保其符合負責任的標準,並有效保護個人資料。 4. 問題根源的因應:G7 DPAs應在AI的開發階段(上游)和應用階段(下游)找出問題,並在問題擴大影響前採取適當措施加以解決。 5. 善用經驗:G7 DPAs應充分利用其在資料領域的豐富經驗,謹慎且有效地應對AI相關挑戰。 二、《關於AI與兒童的聲明》 鑒於AI技術發展可能對於兒童和青少年產生重大影響,G7 DPAs發布本聲明表示,由於兒童和青少年的發展階段及其對於數位隱私的瞭解、生活經驗有限,DPAs應密切監控AI對兒童和青少年的資料保護、隱私權及自由可能造成的影響程度,並透過執法、制定適合年齡的設計實務守則,以及發佈面向兒童和青少年隱私權保護實務指南,以避免AI技術導致潛在侵害兒童和青少年隱私的行為[10]。 本聲明進一步闡述,當前及潛在侵害的風險包含[11]: 1. 基於AI的決策(AI-based decision making):因AI運用透明度不足,可能使兒童及其照顧者無法獲得充足資訊,以瞭解其可能造成重大影響的決策。 2. 操縱與欺騙(Manipulation and deception):AI工具可能具有操縱性、欺騙性或能夠危害使用者情緒狀態,促使個人採取可能危害自身利益的行動。例如導入AI的玩具可能使兒童難以分辨或質疑。 3. AI模型的訓練(Training of AI models):蒐集和使用兒童個人資料來訓練AI模型,包括從公開來源爬取或透過連線裝置擷取資料,可能對兒童的隱私權造成嚴重侵害。 三、《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》 考慮到個人資料匿名化、假名化及去識別化能促進資料的創新利用,有助於最大限度地減少隱私風險,本文件旨在整合G7成員國對於匿名化、假名化與去識別化的一致理解,針對必須降低可識別性的程度、資訊可用於識別個人的程度、減少可識別性的規定流程及技術、所產生的資訊是否被視為個人資料等要件進行整理,總結如下: 1. 去識別化(De-identification):加拿大擬議《消費者隱私保護法》(Consumer Privacy Protection Act, CPPA)、英國《2018年資料保護法》(Data Protection Act 2018, DPA)及美國《健康保險可攜性及責任法》(Health Insurance Portability and Accountability Act , HIPAA)均有去識別化相關規範。關於降低可識別性的程度,加拿大CPPA、英國DPA規定去識別化資料必須達到無法直接識別特定個人的程度;美國HIPAA則規定去識別化資料須達到無法直接或間接識別特定個人的程度。再者,關於資料去識別化的定性,加拿大CPPA、英國DPA認定去識別化資料仍被視為個人資料,然而美國HIPAA則認定去識別化資料不屬於個人資料範疇。由此可見,各國對去識別化規定仍存在顯著差異[12]。 2. 假名化(Pseudonymization):歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)及英國《一般資料保護規則》(UK GDPR)、日本《個人資料保護法》(個人情報の保護に関する法律)均有假名化相關規範。關於降低可識別性的程度,均要求假名化資料在不使用額外資訊的情況下,須達到無法直接識別特定個人的程度,但額外資訊應與假名化資料分開存放,並採取相應技術與組織措施,以確保無法重新識別特定個人,因此假名化資料仍被視為個人資料。而關於假名化程序,日本個資法明定應刪除或替換個人資料中可識別描述或符號,歐盟及英國GDPR雖未明定具體程序,但通常被認為採用類似程序[13]。 3. 匿名化(Anonymization):歐盟及英國GDPR、日本個資法及加拿大CPPA均有匿名化相關規範。關於降低可識別性的程度,均要求匿名化資料無法直接或間接識別特定個人,惟可識別性的門檻存在些微差異,如歐盟及英國GDPR要求考慮控管者或其他人「合理可能用於」識別個人的所有方式;日本個資法則規定匿名化資料之處理過程必須符合法規標準且不可逆轉。再者,上述法規均將匿名化資料視為非屬於個人資料,但仍禁止用於重新識別特定個人[14]。 參、事件評析 本次圓桌會議上發布《關於促進可信賴AI的資料保護機構角色的聲明》、《關於AI與兒童的聲明》,彰顯G7 DPAs在推動AI治理原則方面的企圖,強調在AI技術蓬勃發展的背景下,隱私保護與兒童權益應成為優先關注的議題。與此同時,我國在2024年7月15日預告《人工智慧基本法》草案,展現對AI治理的高度重視,融合美國鼓勵創新、歐盟保障人權的思維,針對AI技術的應用提出永續發展、人類自主、隱私保護、資訊安全、透明可解釋、公平不歧視、問責等七項原則,為國內AI產業與應用發展奠定穩固基礎。 此外,本次圓桌會議所發布《從跨國角度觀察降低可識別性:G7司法管轄區對匿名化、假名化與去識別化的法定及政策定義》,揭示各國在降低可識別性相關用語定義及其在資料保護與隱私框架中的定位存在差異。隨著降低可識別性的方法與技術不斷創新,這一領域的監管挑戰日益突顯,也為跨境資料流動越發頻繁的國際環境提供了深化協調合作的契機。在全球日益關注資料保護與隱私的趨勢下,我國個人資料保護委員會籌備處於2024年12月20日公告《個人資料保護法》修正草案,要求民間業者設置個人資料保護長及稽核人員、強化事故通報義務,並針對高風險行業優先實施行政檢查等規定,以提升我國在數位時代的個資保護水準。 最後,本次圓桌會議尚訂定《2024/2025年行動計畫》(G7 Data Protection and Privacy Authorities’ Action Plan)[15],圍繞DFFT、新興技術與跨境執法合作三大議題,並持續推動相關工作。然而,該行動計畫更接近於一項「基於共識的宣言」,主要呼籲各國及相關機構持續努力,而非設定具有強制力或明確期限的成果目標。G7 DPAs如何應對數位社會中的資料隱私挑戰,並建立更順暢且可信的國際資料流通機制,將成為未來關注的焦點。在全球共同面臨AI快速發展所帶來的機遇與挑戰之際,我國更應持續關注國際趨勢,結合自身需求制訂相關法規以完善相關法制,並積極推動國際合作以確保國內產業發展銜接國際標準。 [1]Office of the Privacy Commissioner of Canada [OPC], G7 DPAs’ Communiqué: Privacy in the age of data (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/communique-g7_241011/ (last visited Feb 3, 2025). [2]Id. at para. 5. [3]Id. at para. 7-9. [4]Office of the Privacy Commissioner of Canada [OPC], Statement on the Role of Data Protection Authorities in Fostering Trustworthy AI (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_ai/ (last visited Feb 3, 2025). [5]Office of the Privacy Commissioner of Canada [OPC], Statement on AI and Children (2024), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2024/s-d_g7_20241011_child-ai/ (last visited Feb 3, 2025). [6]Office of the Privacy Commissioner of Canada [OPC], Reducing identifiability in cross-national perspective: Statutory and policy definitions for anonymization, pseudonymization, and de-identification in G7 jurisdictions (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/de-id_20241011/ (last visited Feb 3, 2025). [7]Office of the Privacy Commissioner of Canada [OPC], Statement on Generative AI (2023), https://www.priv.gc.ca/en/opc-news/speeches-and-statements/2023/s-d_20230621_g7/ (last visited Feb 3, 2025). [8]Supra note 4, at para. 11. [9]Supra note 4, at para. 18. [10]Supra note 5, at para. 5-6. [11]Supra note 5, at para. 7. [12]Supra note 6, at para. 11-15. [13]Supra note 6, at para. 16-19. [14]Supra note 6, at para. 20-25. [15]Office of the Privacy Commissioner of Canada [OPC], G7 Data Protection and Privacy Authorities’ Action Plan (2024), https://www.priv.gc.ca/en/opc-news/news-and-announcements/2024/ap-g7_241011/ (last visited Feb 3, 2025).

TOP