何謂「群眾募資(crowdfunding)」?

  「群眾募資(crowdfunding)」過去原泛指一切提出資金需求計畫,向社會大眾招募資金的行為;目前則指資金需求者透過群眾募資網路平台提出資金需求,由平台代為籌資後再將資金轉交與資金需求者之活動。

  群眾募資可紓解創業家有創意無資金無擔保品的資金困境,因此主要運用於難以透過傳統金融管道取得資金之產業,例如文化創意產業。然而除了商品生產或短期計劃的募資,廣義的群眾募資運用尚包含永續的事業資本募集以及週轉資金募集。目前各種群眾募資模式可分為捐贈模式、股權模式及債權模式:

1、捐贈模式:群眾捐錢贊助某個特定方案,但不期待因個人的捐助而獲得任何金錢上的回報。但通常會獲得提案者承諾提供之實物或者是體驗服務作為回饋。

2、資本模式(或稱股權模式):群眾透過網路平台將金錢投入某個專案,未來可以獲得因該專案所成立之公司的股票,或者是獲得盈餘或收益的分配。

3、債權模式:群眾透過網路平台將金錢借給某個專案或某人某公司,承諾未來會償還所借之金額及利息。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「群眾募資(crowdfunding)」? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7597&no=67&tp=5 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
Golan v. Holder: 美國高等法院確認公共領域之外國著作可取得著作權保護

  美國高等法院於2012年1月18日對Golan v. Holder案做出裁定,確認維持將目前在公共領域的外國著作納入著作權保護的聯邦法。Golan v. Holder案之主要爭點為,美國國會於1994年為符合伯恩公約及WTO「與貿易有關智慧財產權協定(TRIPS)」的規定,決議通過讓之前無法在美國取得著作權保護的外國著作可以回溯取得美國著作權,一夕之間近上百萬件於1923年至1989年之間在國外發表的著作在美國不再屬於公共領域,包括了許多經典的電影,名畫及交響樂等,這個法案引起了許多樂團指揮家、表演者、老師、電影檔案保管者及電影發行商等人士的不滿,因為他們將無法像之前一樣無限制的使用這些著作。   美國聯邦地區法院於2009年曾判定認為恢復屬於公共領域的外國著作的著作權違反了保障言論自由的美國憲法增修條文第一條,但高等法院以6:2的多數意見認為,恢復公共領域的外國著作的著作權保護並不違反憲法修文第一條及憲法下的著作權條款。身為著作權擁有者,這個裁定對電影與音樂業者可以說是場勝戰,但對Google建立電子圖書館的計畫則將是個挑戰,Google表示這將使他們無法把近一千五百萬冊書籍的內容公開在網路上提供,並且也會影響到他們已完成電子化的上百萬冊書籍的使用。

澳洲詮釋自動駕駛「恰當駕駛」內涵

  澳洲國家交通委員會(National Transport Commission, NTC)2017年11月提出「國家自駕車實施指南(National enforcement guidelines for automated vehicles)」,協助執法單位適用目前道路駕駛法規於自駕車案例上。由於澳洲道路法規(Australian Road Rules)第297條第1項規範「駕駛者不得駕駛車輛除非其有做出恰當控制(A driver must not drive a vehicle unless the driver has proper control)」,此法規中的「恰當控制」先前被執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。因此本指南進一步針對目前現行法規適用部分自動駕駛系統時,執法機關應如何詮釋「恰當駕駛」內涵,並確認人類駕駛於部分自動駕駛系統運作時仍應為遵循道路駕駛法規負責。   本指南僅提供「恰當控制」之案例至SAE J2016第一級、第二級和第三級之程度,而第四級與第五級之高程度自動駕駛應不會於2020年前進入市場並合法上路,因此尚未納入本指南之詮釋範圍之中。本指南依照採取駕駛行動之對象、道路駕駛法規負責對象(誰有控制權)、是否應將一隻手放置於方向盤、是否應隨時保持警覺以採取駕駛行動、是否可於行駛中觀看其他裝置等來區分各級自動駕駛系統運作時,人類駕駛應有之恰當駕駛行為。

美國對於智慧聯網 IoT 環境隱私保障展開立法工作

  有鑒於智慧聯網IoT環境下,許多智慧型手持裝置及行動通訊裝置,大量蒐集消費者資訊之隱私權暨資訊安全考量,美國國會於2013年5月10日提出「應用軟體隱私暨資訊安全保護法草案」(Application Privacy, Protection, and Security Act of 2013, APPS Act of 2013, H.R. 1913)進行審議。「應用軟體隱私暨資訊安全保護法草案」草案針對應用軟體(Application)在蒐集消費者資訊前,如何落實「同意」機制,乃強制行動通訊裝置應用軟體開發商(developer)應:(1)提供使用者個人資料蒐集、使用、儲存及公開之通知(notice),而該通知含括所蒐集個人資料之種類、使用目的、有償公開第三者之類別及資料儲存等;(2)取得使用者之同意(consent);消費者依據該草案亦有權撤銷其「同意」(withdrawal of consent)。此外,草案乃強制要求該行動通訊裝置應用軟體開發商,就非法近取之個人資料及經去識別化應用軟體蒐集之個人資料,應採取合理及適當之防衛措施(security measures on personal data and de-identified data)。   並且,針對網路環境下隱私權保護議題,更早之前,美國國會於2013年2月28日提出「線上禁止追蹤法草案」(Do-Not-Track Online Act of 2013) 進行審議。「線上禁止追蹤法草案」草案乃要求聯邦貿易委員會(FTC),就透過個人線上活動追蹤,以蒐集、使用個人資料之行為態樣,進行管制。該管制模式謹據以要求如下:(1)被搜集資料個人應收到簡單、明確、並載明資料使用目的之通知(clear, conspicuous and accurate notice and use of such information),而個人就該通知應予明白之同意(affirmative consent);(2)FTC未來在訂定標準規範時,應(shall)考量所被搜集之資料,是否在匿(隱)名基礎上處理之,遂該資料無法有效被聯結(指認)到特定個人或裝置上;此外,消費者當享有資料不被蒐集的權利(expressed preference by individual not to have personal information collected)。該草案並就違反之個人,設定最高15,000,000美元損害賠償規定。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP