何謂德國「資訊科技安全法(IT-Sicherheitsgesetz)?

  德國聯邦議會於2015年通過資訊科技安全法(IT-Sicherheitsgesetz),主管機關為聯邦資訊安全局(Bundesamt für Sicherheit in der Informationstechnik, BSI),隸屬於德國聯邦內政部(Bundesministerium des Innern)。目的是為保障德國公民與企業使用的資訊系統安全,特別是在全國數位化進程中,攸關國家發展的關鍵基礎設施,讓德國成為全球資訊科技系統及數位基礎設施安全的先驅與各國的模範,同時藉此強化德國資訊科技安全企業的競爭力,提升外銷實力。

  該法案主題包括,在關鍵基礎設施上改進企業資訊科技安全、保護公民的網路安全、確保德國聯邦資訊科技、加強聯邦資訊技術安全局的能力與資源、擴展聯邦刑事網路犯罪的調查權力。

  該法主要係針對關鍵基礎設施營運者(Kritische Infrastrukturbetreiber) 進行安全要求,例如在能源、資訊科技、電信、運輸和交通、醫療、水利、食品、金融與保險等領域的企業。德國聯邦政府要求關鍵基礎設施的營運商,要滿足資訊科技安全的最低標準,且須向聯邦資訊安全局通報資訊安全事件。聯邦資訊安全局要對關鍵基礎設施營運商的資訊進行評估分析,並提供給關鍵基礎設施營運商彙整改善,以提高其基礎設施的保護。

本文為「經濟部產業技術司科技專案成果」

※ 何謂德國「資訊科技安全法(IT-Sicherheitsgesetz)? , 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7598&no=67&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國紐約州通過「防止非法侵入與加強電子資料安全法案」

  2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。   當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。

歐盟針對個人資料傳輸第三國之規範提出參考指引

  歐盟資料保護監督機關(European Data Protection Supervisor, 下稱EDPS)於2014年7月14日,針對利用雲端運算以及行動設備,將個人資料從歐盟境內傳輸至非歐盟國家之部分,提出意見書作為參考指引。EDPS通常會針對雲端業者在從事商業服務時,進行監督審查,當個人資料透過雲端運算服務進行傳輸或處理時,會由EDPS先行確認,以確保該傳輸是否符合歐盟之個人資料保護指令(Directive 95/46/EC)與規則(Regulation (EC) No 45/2001)之規範。   有鑑於跨境合作或使用傳輸服務等需求,歐盟境內將個人資料傳輸至第三國或國際組織之情形日益劇增,此參考指引之主要目的在於詳加解釋歐盟資料保護規則(Regulation (EC) No 45/2001)中關於國際間個人資料傳輸之規定以及應該如何適用。   首先,該指引針對何謂個人資料傳輸以及歐盟資料保護規則第9條之範圍做出說明,後續則分別就適當保護之意涵,以及由歐盟執委會基於規則第9.5條之規定依權限得決定第三國是否已達適當保護標準之國家等部分加以論述。最後,該指引則提供確認表,在資料傳輸前應經過一定的確認流程,包括確認資料接收的國家或組織是否已有適當的保護層級,若無,則是否尚有其他資料可證明。如上述皆無法證明,則應考慮是否有例外情況,例如:取得資料所有人同意得進行傳輸、資料所有人與資料控管者因契約約定同意傳輸、資料控管者與第三人因契約約定,基於資料所有人之利益而傳輸、基於重要公益事由或其他法律上之事項必要傳輸、基於保護資料所有人之重要利益而傳輸、基於資料提供於大眾而傳輸等。倘缺乏以上例外情形,則可考慮資料控管者是否得援引自己已經具備適當的安全機制而可進行資料傳輸。最後,如無任何安全之保護,則資料將無法進行傳輸至第三國。   綜上,歐盟針對資料傳輸予第三國之部分做出更詳細之說明作為參考指引,使資料之傳輸與流通更有明確的規範方向,其後續適用之成效為何應可持續觀察。

加州立法機關提出社群媒體青少年成癮法草案,促進兒童身心福祉

社群媒體是溝通資訊之重要工具。但部分社群媒體向用戶投放易使人成癮的資訊,對兒童和青少年福祉形成重大風險。據此緣由,美國加州立法機關於2024年1月29日提出社群媒體青少年成癮法草案(Social Media Youth Addiction Law),規定社群媒體除非能合理確定用戶非未成年人,或取得未成年用戶家長同意,否則不得向用戶提供易使人成癮的資訊。 該草案將網路或應用程式中,依用戶特徵或習慣,優先顯示的多片段資訊,定義為易使人成癮的資訊(addictive feed)。除非該資訊符合以下例外條件: (1) 用戶用以搜尋資訊的關鍵字不會被使用的設備記憶,且該資訊與用戶過去的社群媒體使用行為無關。 (2) 是因用戶隱私設定、設備規格、未成年人限制而呈現的資訊。 (3) 是因用戶明確要求而提供,且不易使人成癮的資訊。 (4) 是用戶間直接且非公開之通訊組成的資訊。 (5) 是同一資訊來源,且在音檔或影片形式下,不會自動連續播放的資訊。 該草案亦規定投放易使人成癮資訊的社群媒體,不得在深夜至凌晨時段、上學至放學時段,以及開學期間的週一到週五,向未成年用戶發送通知,除非已取得未成年用戶家長同意。 最後,該草案規定投放易使人成癮資訊的社群媒體每年向公眾揭露未成年用戶總數量、家長同意接收易成癮資訊的未成年用戶數量等資訊。該規定有利大眾監督社群媒體對法規之遵循情況,並促進社會對兒童、青少年身心健康的關心。

TOP