資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。
增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。
大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。
近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
英國商業、能源暨產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2021年3月2日向英國國會提交「先進研究發明署法案」(The Advanced Research and Invention Agency Bill),作為英國政府設立獨立研究機構「先進研究發明署」(Advanced Research and Invention Agency, ARIA)的法源依據,用以補助高風險、高報酬之前瞻科學與技術研究,將仍處於想像階段的新技術、發現、產品或服務化為現實。 本法案授予ARIA高度的自主性,使ARIA得以招攬世界頂尖的科學家與研究人員,規劃最具前瞻性與發展潛力的研究領域提供研發補助;同時也給予相較於其他研究機構更多容許失敗的彈性,並明確指出失敗是前瞻科學研究必然經歷的過程。ARIA對於研發資金的運用將因而獲得充分的自主性與彈性,包含對於研究計畫提供快速啟動基金與其他獎項做為激勵措施,或是依據研發進展即時決策是否延續或中止。 ARIA取法自美國國防先進研發署(Defense Advanced Research Projects Agency, DARPA),美國DARPA在網際網路、GPS等技術研發上的成就,直到近期支持針對COVID-19的mRNA疫苗及抗體療法從而取得重大進展,在在顯示了DARPA模式的可行性與重大影響力,而其成功的關鍵在於高度的自主性、靈活性以及最少的行政程序障礙,因此法案將允許ARIA不受政府採購相關限制、並免於政府資訊公開的義務,以減少行政程序對於研發進程的影響。但ARIA每年度仍須向國家審計署提供年度會計報告以作為政府對其最低限度的監督手段,除此之外,商業部長將有權中止與敵對勢力對象的研發合作或結束特定的研究計畫。
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
美國聯邦通訊傳播委員會決議將進行網路中立立法美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )在2009年10月22日表決,一致同意開始進行對「網路開放」(Open internet)相關之規範。除了2005年所提出之前四項提議原則外版本外,FCC新提出兩項提議原則,尋求意見,共包含: 1. 確保網路使用人均可選擇網路服務及內容之自由; 2. 保護對合法網路應用和合法服務使用之權利; 3. 選擇於網際網路上使用設施(devices)之自由; 4. 網路提供業者(network providers)、應用提供業者(application providers)、服務業者(service providers)、和內容提供業者(content providers)者間之競爭關係; 5. 網路提供業者之管理措施,不得基於網路流量(traffic)而對之歧視(discriminate),但得基於顧客之利益采取相關管理措施; 6. 寬頻提供業者,需揭露網路管理措施之方案資訊,以及管理措施對使用者所造成之影響。 參議員John McCain 則表示,網路中立(Net neutrality)的原則,將會扼殺創意和傷害就業市場,該議員並提出網路自由法案(Internet Freedom Act of 2009),認為該法案使避免網路受到政府管控,並且允許持續的創新和創造更多高價值之就業機會。維持網路事業的自由,免於沉重的規範,將是對經濟最佳之刺激方式。 同時也有人質疑,FCC並非授權管理網路之機構,且其所訂定之原則,並未具有法規效力,無法強制執行,而FCC制定該原則之意義為何?但FCC則表示,已獲得政策原則執行之授權。
論ENUM服務推動與應用之法制議題