資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。
增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。
大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。
近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。
美國聯邦通訊委員會(FCC)主席Genachowski於2009年9月21日表示,FCC將提出新的網路開放指導原則,要求包括無線網路服務提供商在內的業者,維持網路中立,不得因傳送或下載資訊種類之差異而進行流量差別管理。此提案若經同意,預計將能有效避免如AT&T、Verizon與Comcast等大公司故意阻斷或是降低特定消耗大量頻寬網頁流量,或對不同用戶收取差異價格的情況。 現行的網路開放原則係於2005年提出,僅要求網路營運商不得阻斷(stop)使用者接取合法的網路內容、應用與服務,或抵制(prevent)不讓使用者以無害的設備,如智慧手機,連線接取相關服務。 FCC預計在現行的指導原則上加入兩條新的原則,以更確保網路的開放與中立性。此兩條新的原則包含對寬頻網路服務提供業者不得歧視的網路內容與應用規範之種類,以及對網路服務提供業者透明化其網路管理作法之要求等。 FCC主席表示,雖然這樣的提案肯定會遭受到電信業者的反對,但FCC仍應積極維護網路公開與自由。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。
奧克蘭市(Oakland)成為美國第三個禁止公部門使用人臉辨識技術的城市近年來,人臉辨識(Face recognition)技術迅速發展,增加便利性的同時,也伴隨了種種隱憂,如:對隱私權的侵害、公部門權力濫用等,是以加州舊金山市(San Francisco)和麻薩諸塞州薩默維爾市(Somerville)分別在今年(2019)5月和6月發布公部門使用人臉辨識技術的相關禁令,加州奧克蘭市(Oakland)並於7月16日跟進,成為美國第三個禁止公部門使用人臉辨識技術的城市。 2018年麻省理工學院曾針對人臉辨識技術的正確率做過研究,其研究結果報告顯示黑人女性辨識錯誤率超過30%,遠不如白人男性;美國公民自由聯盟(American Civil Liberties Union, ACLU)也針對Amazon人臉辨識軟體Rekognition做過測驗,結果該系統竟誤將28名美國國會議員顯示為嫌疑犯,這兩項研究顯示,人臉辨識技術存有極高錯誤率且對種族間存有很大的偏見與歧視。對此奧克蘭市議會主席卡普蘭(Rebecca Kaplan)一項聲明中表示:「當多項研究都指出一項新興技術具有缺陷,且造成寒蟬效應的時候,我們必須站出來」。 卡普蘭並表示:「建立社區和警察間信任與良好關係以及導正種族偏見是很重要的,人臉辨識技術卻反而加深此問題」、「對於隱私權和平等權的保護是最基本的」,故奧克蘭市通過禁止公部門使用人臉辨識技術的法令,原因如下: 人臉辨識系統所依賴的資料集,具高度不準確性。 對於人臉辨識技術的使用與共享,尚缺乏標準。 這項技術本身具有侵犯性,如:侵犯個人隱私權。 政府如果濫用該技術所得之資訊,可導致對弱勢族群的迫害。 雖然目前美國僅有三個城市通過政府機關禁止使用人臉辨識技術的法令,但依照目前的發展狀態,其他的城市甚至州在未來也可能會跟進頒布禁令。
日本金融廳全面整治虛擬貨幣交易所今年1月底日本Coincheck虛擬貨幣交易所爆出最大規模的駭客攻擊事件後,日本金融廳開始擴大調查國內虛擬貨幣交易平台營運狀況;3月8日首次對2家虛擬貨幣交易平台業者Bit Station及FSHO祭出為期一個月「勒令停業」之行政處分,前者主因係公司內部高階主管擅自挪用客戶資金,違反資金結算法中用戶財產管理與用戶保護措施規範;後者則係發現多筆高額交易時,網路系統並未進行用戶認證,公司亦未對員工進行內部培訓課程,違反資金結算法中關於用戶保護措施之規範。 同時,日本金融廳亦對Coincheck、Bicrements、GMO Coin、Tech Bureau,及Mr.Exchange等5家虛擬交易平台業者發布下令改善之行政處分,要求業者重新審視經營漏洞,限期建立有效且完善的風險管理系統、保護消費者機制、反洗錢與打擊資恐、資金管理系統、內部稽核與內部控制系統及用戶客服系統等,避免再度發生大型駭客攻擊事件。 另為能有效地建立虛擬貨幣交易市場管制規範,日本金融廳宣布成立「虛擬貨幣交易產業研究小組」,並由學者、金融業者及虛擬貨幣業者為主要成員,為將來虛擬貨幣市場可能面臨各種議題,研析相關監管政策及法制規範。 面對襲捲而來之虛擬貨幣交易經濟,日前法務部邀集金管會、內政部、央行、警政署、調查局等單位跨部會協商,並就管制面、執法面等持續進行研商;我國或可以日本該次事件為借鏡,於行政管制強度做適當之調整,尤其我國為亞太防制洗錢組織(APG)創始會員,而虛擬貨幣交易之匿名性,已成為反洗錢與反資恐之最大風險,隨著虛擬貨幣交易行為頻繁與發展態樣多變,日後對於虛擬貨幣交易之管制政策與範圍都將備受矚目。