大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴

  資料利用之層面越來越廣,且無論是基於商業或公益目的,產生越來越多難題。穿戴式裝置及物聯網的發展,亦使得資料之蒐集利用及界線等問題更顯其重要性。有鑑於此,大倫敦政府(Greater London Authority, GLA)在今(2016)年3月公布「倫敦城市資料策略」(London City Data Strategy),積極推動「城市資料市集」(City Data Market),期將倫敦打造成世界首屈一指的智慧城市。

  增加大眾對資料市集之信賴並減少疑慮乃「倫敦城市資料策略」之一環,近年在英國有一系列新法上路,除新的歐盟資料保護規範(GDPR)外,英國國內有關「開放銀行」(open banking)之新規範,以及已有能源及電信公司參與之MiData initiative等,上述機制均為促使個人更容易掌握其個資被利用之狀況。

  大倫敦政府亦推動「倫敦資料交易」(London Data Exchange),大眾可利用此一機制掌握其個資流向。其中有關建置新的數位符號(digital tokens of proof),使民眾未來可利用此等符號證明符合特定資格,例如在道路受檢時,毋須拿出駕照說明個人姓名、地址、出生年月日等資料,利用該等符號,便可判定符合駕駛年齡。

  近期,大倫敦政府透過資料科學合作夥伴(Data Science Partnership)推動資料科學倫理架構(Framework for Data Science Ethics),著手研究民眾對資料交易新機制的反應,試圖在資料利用與法律和道德問題間尋求平衡。

相關連結
※ 大倫敦政府推動城市資料市集,期尋求資料利用及隱私保護間之平衡,建立民眾對資料市集之信賴, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7603&no=67&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
揭露產品溯源資訊,兼顧防偽、永續!歐盟區塊鏈物流認證計畫進行試點,將於11月發布報告

為確認產品供應鏈與物流鏈的真實來源、打擊仿冒品、提升永續資訊透明度以接軌歐盟政策,歐盟智慧財產局(下稱EUIPO)自2023年5月啟動區塊鏈物流認證計畫(下稱EBSI-ELSA),採難以竄改、公開透明的區塊鏈服務基礎設施(European Blockchain Services Infrastructure,下稱EBSI),透過數位簽章(digital signature)、時戳追溯與驗證歐盟進口產品的來源是否為智慧財產權利人。EUIPO 於2024年6月24日宣布EBSI-ELSA已上線8成基礎設施。為加速推動計畫,於2024年9月至11月間,EUIPO以產品鏈的智財權利人(例如鞋類與/或服裝、電氣設備、手錶、醫療設備與/或藥品、香水與/或化妝品、汽車零件與玩具產業別之產品智財權利人)為試點,並將於2024年11月前發布試點最終報告。 透過試點,EUIPO致力於: (1)測試、評估於真實世界之製造與分銷系統中應用數位簽章及物流模組的情況,以作為智財權利人之企業資源規劃(ERP)的一部分。 (2)於產品歷程,測試、評估數位裝運契約(digital shipment contract)及產品數位孿生(Digital Twin)之資訊的接觸權限與品質(access to and quality of information)。如海關人員預計於產品抵運前(pre-arrival)、通關階段(inspection phases)確認產品之真實性。 (3)提供產品生命週期應用EBSI-ELSA之試點最終報告,包含實施過程、結果等相關資料。 EBSI-ELSA計畫認為其符合歐盟之數位政策與循環經濟目標,旨於採取區塊鏈技術向供應商、消費者、海關、市場監管機構等多方揭露更多的產品溯源資料,提升產品透明度,銜接歐盟之數位產品護照(Digital Product Passport, DPP)政策,該政策目的係以數位互通方式揭露歐洲市場之產品生命週期的資訊,如產品材料來源、製程、物流、碳足跡等永續資訊,強化產業的可追溯性、循環性(circularity)及透明度,以協助供應鏈利害關係人、消費者、投資者做出可持續的選擇。而負責執行歐盟資料經濟與網路安全相關政策之歐盟執委會資通訊網絡暨科技總署(DG Connect)於2024年5月所發布之「數位產品護照:基於區塊鏈的看法」報告,亦指出「為確保區塊鏈系統互通性,其IOTA區塊鏈技術框架應能與歐盟內部市場電子交易之電子身分認證及信賴服務規章(EIDAS)及EBSI標準完全接軌(fully align)」。 如我國企業欲強化既有的產品生命週期資料管理機制,可參考資策會科法所創智中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,從數位資料的生成、保護與維護出發,再延伸至存證資訊之取得、維護與驗證之流程化管理機制,協助產業循序增進資料的可追溯性。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

WHO公布實施遠距醫療綜合指引

COVID-19大流行對公共衛生保健服務施加了巨大壓力,同時限制了實體醫療服務的近用,引起人們對實施或擴大實施遠距醫療(Telemedicine)的極大興趣。為了對應全球對遠距醫療服務的增長,世界衛生組織(World Health Organization , WHO)於今(2022)年11月9日發布《實施遠距醫療綜合指引》(Consolidated Telemedicine Implementation Guide),以幫助政策制定者、決策者與實行者設計與監管遠距醫療之實施。 遠距醫療,涉及使用數位科技來克服公衛服務的距離障礙,具有改善臨床管理和擴大醫療服務覆蓋範圍之潛力。遠距醫療已證明的好處包含減少不必要的臨床就診、提供更及時的醫護和擴大醫療服務的覆蓋率。 這份指引建議政策決策者以及設計和監管遠距醫療之實施人員,實施遠距醫療應分為三個階段,其詳細步驟重點如下: 階段一:評估情況 1.組建團隊,並確立目標:確定應參與遠距醫療設計、管理和實施的利害關係人。 2.定義衛生計畫的背景與目標:確定遠距醫療的服務計畫與其地理範圍。 3.對作業環境進行分析:對應用軟體(Software Applications)與通信平台的訊息傳遞通道(Channel)進行作業環境分析、評估應用軟體是否可符合硬體之需求。 4.評估有利環境:包含評估數位成熟度以確定基礎設施與組織需求、審查公衛工作者的能力、評估監管與政策之顧慮、考慮資訊跨域流動之影響、探討財政機制。 階段二:實施之規劃 1.確定遠距醫療系統將如何運作:定義功能性和非功能性需求、因應需求更新之工作流程、進行廣泛的用戶測試、變更管理計畫。 2.實施病人與衛生系統工作者之安全與保護機制:包含建立個資隱私、近用和保護病人個資的系統、實施公衛人員身分驗證之方式、決定並揭露是否會進行錄音錄影等事項。 3.建立標準操作程序(Standard Operating Procedures, SOP):確定遠距醫療適用的案例與潛在責任、決定培訓方式與支持管道、建立確定身分之流程、建立明確的同意文件、討論是否需改變公衛人員的薪酬、建立聯網醫療器材(Connected Medical Devices)的管理計畫。 4.強化客戶/病人參與以及性別、公平與利害關係人權利:決定遠距醫療之推廣機制(Mechanisms for Outreach)、評估遠距醫療之公平性、對利害關係人權利的影響與確保殘疾人士的可近用性。 5.制定預算:確定總成本預算、計畫如何將遠距醫療服務整合到常態醫療服務和採購安排之中。 階段三:監測和評估(Monitoring and Evaluation, M&E)與持續改善 1.確定監測和評估目標:定義績效評估和影響指標。 2.計畫持續改善和適應性管理:加入日常監管和持續改善機制、降低潛在風險。 WHO最後提醒遠距醫療是對於醫療服務的補充而非取代,並提供一個確保病人安全、隱私、追溯性、問責制的可監督環境。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

韓國「2021年經濟政策」

  韓國財政經濟部(Ministry of Economy and Finance)於2020年12月17日發布「2021年經濟政策」(2021 Economic Policies)。2021年經濟政策中包含兩大重點,分別為因應新型冠狀病毒影響下的不確定性,盡快恢復經濟成長動能,以及推動產業創新與結構轉型,以培植未來的經濟成長動力。政策文件中指出,儘管2020年經濟成長率因疫情影響而表現低迷,但仍期許2021年經濟能夠盡快好轉,改善投資、出口與國內就業。   針對如何盡快恢復經濟成長動能議題,政策文件指出首先應處理因疫情帶來的不確定性,除了維持擴張性財政政策,以增加政府支出刺激總體需求外,在經濟成長與疫情防治間應取得平衡並加強風險管理;其次為透過租稅減免促進消費、擴大投資額度與提供出口融資,以及提供資金以扶植中小企業、提供優惠貸款協助大型企業度過疫情難關、鬆綁法規以發展地方經濟等一連串措施,來達到恢復經濟成長動能的目標。   而在推動產業創新與結構轉型上,將持續投資於5G應用與6G技術的發展上,推動數位經濟與數位政府系統建構,具體措施包含減免投資5G應用貸款稅率2%、籌集投資數位新政基金、完善智慧醫療應用等。此外在扶植新創政策上,則包含建立新興科技實驗場域(K-test bed),以政府採購扶植新興科技、提供商機以及協助銜接海外市場,修正創投法規開放附認股權憑證之低利貸款以引進矽谷創投資金,以及排除可轉換可贖回之債務認定以降低政府研發補助申請門檻等,以有效扶植創新能量成為未來的經濟成長動力。

TOP