金融科技(Fintech)專利戰局:那斯達克申請備份交易紀錄之區塊鍊專利

  

  近年來,大型銀行及信用卡公司爭相為其核心技術及在創新上的投資尋求專利保護。從2013年截至今日,數個大型金融機構在美國已至少申請近2700項專利,這些專利涵蓋目前最火紅的領域,包含:區塊鍊、分析以及資訊安全等。金融領域的專利申請量相較前三年已達到約百分之八十三的驚人成長。

  全球最大的證券交易所之一那斯達克(NASDAQ)近年來亦投入區塊鍊技術的研發及應用。去年(2015)起,那斯達克便以區塊鍊技術搭建了私募股權的智能平台Linq,今年(2016)更提出了利用區塊鍊技術備份交易紀錄以保證交易安全的專利申請。

  今年十月六日,美國專利商標局(United States Patent and Trademark Office,簡稱USPTO)公布一項新的專利申請「區塊鏈交易紀錄之系統與方法」(Systems and methods of blockchain transaction recordation)。這個專利在今年三月三十一日提出,發明人為那斯達克的企業結構資深副總裁Tom Fay,及企業結構協理副總裁Dominick Paniscotti。

  具體而言,這個專利是由:一個電子錢包、一個委託簿(order book),以及配對引擎所組成。該配對引擎包含一項用來紀錄、且能夠及時更新交易紀錄的「封閉區塊鍊」。 該專利申請詳細介紹了這項技術:在這個系統中,當數據交易請求間之配對被辨認出來後,系統就會生成電子錢包及相應數據交易請求的hash值。當交易的一方收到另一方的hash值與相應資訊,各交易方的交易就會被增加至區塊鍊計算系統的區塊鍊上。在這個系統下,交易所查核區塊鍊的內容,尋找與這些電子錢包相關的數據。此外,這些數據資料會被額外備份於獨立的資料庫。

「本文同步刊登於TIPS網站(https://www.tips.org.tw

相關連結
※ 金融科技(Fintech)專利戰局:那斯達克申請備份交易紀錄之區塊鍊專利, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7605&no=67&tp=1 (最後瀏覽日:2026/01/13)
引註此篇文章
你可能還會想看
任天堂於哥斯大黎加的「SUPER MARIO」商標爭議中敗訴

哥斯大黎加國家登記處(Costa Rican National Register)於2025年1月21日做出准許當地超市登記「SUPER MARIO」商標的決定,駁回任天堂之異議。 該超市位於哥斯大黎加的聖拉蒙區,屬於區域型超市,因創辦人名為Mario Alfaro,且當地通常將超市簡稱為super一詞,在1970年創立超市時取名為SUPER MARIO,並於2013年註冊商標「SUPER MARIO Su lugar de confianza」(意為超級瑪利歐值得信賴的地方),實際是將SUPER MARIO與 Su lugar de confianza分成上下兩列,且SUPER MARIO之字體大於Su lugar de confianza之字體。該超商於2024年以「SUPER MARIO」申請第35類商標,惟被任天堂(Nintendo)主張「SUPER MARIO」為任天堂所擁有商標而提起異議。 任天堂雖於當地有註冊「SUPER MARIO」商標,惟其註冊類別係電子遊戲、玩具、服飾等第9、18、25、28等產品類別,並未包含第35類之民生消費品零售服務,因此其異議被哥斯大黎加國家登記處所駁回,該「SUPER MARIO」超市得以註冊第35類「SUPER MARIO」商標。 另須留意的是,該超市名稱「SUPER MARIO」,雖與任天堂的「SUPER MARIO」相同,但其標誌實際之配色,係以黃色與藍色搭配,此種顏色差異可避免消費者產生與任天堂「SUPER MARIO」商標之間的聯想。 組織常隨著業務經營變動就品牌商標進行變更或調整,此案之超市於長期經營後欲以其「SUPER MARIO」名稱作為商標註冊而發生之爭議,該爭議差點造成無法註冊新商標,顯見商標權利管理不只限於申請、延展、主張權利等事宜,尚包含品牌命名或標誌全新/優化設計,須留意命名或標誌全新/優化設計方向,是否與他人既有商標近似,無法取得註冊商標的風險;行銷使用品牌商標時,應留意是否依註冊商標樣態使用,避免任意變換使用註冊商標樣式,致與他人商標近似而被控侵權。完整之智財管理機制可參經濟部產業發展署所推廣之台灣智慧財產管理規範(Taiwan Intellectual Property Management System,簡稱TIPS),組織可依其風險情境展開對應之風險應對措施,以降低組織營運可能產生的智財風險,並因應環境變化調整內部規定與做法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em}

美國情報體系發布「情報體系運用人工智慧倫理架構」

  美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。

Ofcom建議ISP之寬頻廣告應以平均速度為準

  鑑於ISP對於寬頻服務的廣告速度常與實際提供速度有落差,英國廣告標準管理局(Advertising Standards Authority,ASA)要求廣告事務委員會(Committee for Advertising Practice,CAP)與廣播廣告事務委員會(Broadcast Committee for Advertising Practice,BCAP)針對英國各地區的ISP寬頻廣告進行審查,CAP與BCAP則委託Ofcom進行各ISP實際寬頻服務速度之調查。   Ofcom於2010年11月~12月期間,針對ADSL、Cable及光纖等寬頻服務進行各時段的大規模測試。綜合以往的調查,Ofcom研究結果發現,英國寬頻服務平均速度約從 5.2 Mbps(2010年5月)至6.2 Mbps的(2010年11~12月),但不到廣告所宣稱速度之一半(平均寬頻廣告速度為 13.8 Mbps,故僅約45%。)   在各種寬頻技術中,ADSL的廣告與實際落差最大,廣告宣稱8Mbps之速度,實際平均僅有2~5Mbps;而Cable的廣告與實際落差最小,實際速度均能達到廣告速度的90%左右;光纖寬頻則約在80%~90%之間。      Ofcom並建議將以下原則增訂至英國寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds)中 • 如果寬頻速度是廣告內容,必須包括一個「典型的速度範圍」(Typical Speed Range,TSR),計算依據為將某一速度之使用者依照實際接取速度分為四等級,去掉最高與最低,取中間50%使用者之平均速度為準; • TSR必須至少與宣稱之速度相當; • 宣稱的速度必須代表相當大比例使用者能夠接受的實際速度; • 任何TSR或宣稱之速度在用於廣告時,必須是基於足夠的分析統計數據,而該數據與方法應經過審議。   Ofcom認為ISP的寬頻廣告應反映消費者能接受之實際速度,因此改變廣告規範是必要的,以促使各ISP進行以速度為基礎之競爭,並確保消費者有充分資訊可比較、選擇最有效率之寬頻服務。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP