近年來,大型銀行及信用卡公司爭相為其核心技術及在創新上的投資尋求專利保護。從2013年截至今日,數個大型金融機構在美國已至少申請近2700項專利,這些專利涵蓋目前最火紅的領域,包含:區塊鍊、分析以及資訊安全等。金融領域的專利申請量相較前三年已達到約百分之八十三的驚人成長。
全球最大的證券交易所之一那斯達克(NASDAQ)近年來亦投入區塊鍊技術的研發及應用。去年(2015)起,那斯達克便以區塊鍊技術搭建了私募股權的智能平台Linq,今年(2016)更提出了利用區塊鍊技術備份交易紀錄以保證交易安全的專利申請。
今年十月六日,美國專利商標局(United States Patent and Trademark Office,簡稱USPTO)公布一項新的專利申請「區塊鏈交易紀錄之系統與方法」(Systems and methods of blockchain transaction recordation)。這個專利在今年三月三十一日提出,發明人為那斯達克的企業結構資深副總裁Tom Fay,及企業結構協理副總裁Dominick Paniscotti。
具體而言,這個專利是由:一個電子錢包、一個委託簿(order book),以及配對引擎所組成。該配對引擎包含一項用來紀錄、且能夠及時更新交易紀錄的「封閉區塊鍊」。 該專利申請詳細介紹了這項技術:在這個系統中,當數據交易請求間之配對被辨認出來後,系統就會生成電子錢包及相應數據交易請求的hash值。當交易的一方收到另一方的hash值與相應資訊,各交易方的交易就會被增加至區塊鍊計算系統的區塊鍊上。在這個系統下,交易所查核區塊鍊的內容,尋找與這些電子錢包相關的數據。此外,這些數據資料會被額外備份於獨立的資料庫。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國拜杜法雖下放政府補助研發成果給予執行單位,但基於針對受補助者行使研發成果時若未能妥適授權運用,政府得行使「介入權」(march-in rights)。所謂的介入權,是指補助機關事後可以因為執行單位授權或運用不當,而選擇強制介入調整其授權內容。但補助機關採用介入權是有前提要件的,35 U.S.C. § 203規定:「受補助者在適當的合理期間內,未能採取有效的措施以達到該創新的實際應用或使用…」或者強制授權是「其他聯邦法律規定的保護公共健康、安全需要或公共使用」所必要者。相對我國則有經濟部於「經濟部科學技術研究發展成果歸屬及運用辦法」第21條規定政府介入權發動之要件,其與美國法制有異曲同工之妙。
日本通過數位社會形成基本法日本國會於2021年5月12日,通過由内閣官房資通訊技術總合戰略室提出之數位社會形成基本法(デジタル社会形成基本法)。數位社會之形成,將有助於提升國際競爭力與國民便利性,因應少子化、高齡化與其他重要課題,本法之立法目的係為推動數位社會形成,使日本國內經濟健全發展,幫助國民幸福之實現。 本法之重點概如下述: 數位社會之定義係指藉由先進資通訊技術,適當有效活用各式各樣大量之電磁紀錄資訊,使各領域均得創新蓬勃發展之社會。 數位社會形成之理念係為了使國民生活能切實感受到寬裕和富足,實現國民得安全安心生活之社會,降低數位落差,並確保在數位社會下,個人與法人權利以及其他法律所保護之利益。 國家須制定數位社會形成之政策,具體包含確保高度資訊通訊網路與資通訊技術之可及性、整合國家與地方自治團體資訊系統、使國民得活用國家與地方自治團體之資訊、建立公部門基礎資訊資料庫、確保資通安全等。 為形成數位社會,明定國家、地方政府及企業之相關責任義務。 依數位廳設置法設置由內閣管轄之數位廳,並制定數位社會形成相關之重點計畫。 廢止高度資通訊網路社會形成基本法(IT基本法),以數位社會形成基本法為新資通訊技術戰略。
“Cookies”—餅乾或是毒藥? 美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。