英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢

  英國上議院科學及科技委員會(The House of Lords, Science and Technology Committee)於2016年9月15日對於自動駕駛車(Autonomous Vehicles)的運作環境與應備法制規範展開公眾諮詢,委員會邀請利害相關的個人和團體提交書面文件來回應此公眾諮詢。書面意見提交的最後期限是2016年10月26日。

  英國政府一向對發展自動駕駛車的潛力十分積極,其在2015年建立了一個新的聯合政策單位-聯網與自動駕駛車中心(Centre for Connected and Autonomous Vehicles, CCAV),並在2015年財政預算案中提供CCAV一億英鎊的智慧行動研發基金聚焦於無人駕駛車技術。CCAV還公佈現有與車輛交通相關立法的調查報告,其結論是:「英國現有的法律架構和管制框架並不構成自動駕駛車在公路上測試的阻礙。」此外,CCAV還出版了無人駕駛汽車測試的實務守則。在2016年英國女王的演講中,政府宣布將制訂現代運輸法案(Modern Transport Bill):「確保英國處在最新運輸科技的尖端,包括自動駕駛和電動車。」 2016年7月,CCAV舉辦了英國的聯網與自動駕駛車的測試生態系統的公眾諮詢,以及於2016年9月發佈個人和企業對於在英國使用自動駕駛車技術和先進輔助駕駛系統的公眾意見徵詢。

  本次公眾諮詢將調查政府所採取的行動是否合適,是否有兼顧到經濟機會和潛在公共利益。在影響與效益方面,本次諮詢將收集自動駕駛車的市場規模與潛在用途、對用戶的益處與壞處、自動駕駛車對不同產業的潛在衝擊以及公眾對於自動駕駛車的態度等相關證據。在研究與開發的方面,自動駕駛車目前的示範計畫與規模是否足夠、政府是否有挹注足夠的研發資金、政府研發成果的績效以及目前研發環境是否對中小企業有利等面向,找尋傳統道路車輛是否有和自動駕駛車輛並存的過渡轉型方法。最後,布署自動駕駛車是否需要提升軟硬體基礎設施、政府是否有建立資料與網路安全的方法、是否需要進一步的修訂自動駕駛車相關法規、演算法及人工智慧是否有任何道德問題、教育體系是否能提供自動駕駛車相關技能、政府制訂策略的廣度;以及退出歐盟是否對英國研發自動駕駛車產業有不利之影響;而英國政府是否應在短期內做出保護該產業之相關措施,或是待Brexit條款協商完成之後再視情況決定等等。

  上述議題在書面意見徵集完成之後,將於2016年11月召開公聽會再度徵集更廣泛的相關意見,科學及科技委員會希望能在2017年初做成調查報告並提交給國會,在得到政府回應之後,可能將進行辯論以決定未來英國自動駕駛車產業的發展方向。

相關連結
※ 英國上議院對於自動駕駛車運作環境及應備法制規範展開公眾諮詢, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7606&no=67&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

台灣每人二氧化碳排放量逐年增加 全球第二十二名

  台灣自一九九○年至二○○四年止,平均每人排放量自五‧五七公噸大幅增加至十一‧五九公噸,以國際能源總署 (IEA )截至2002年統計,全球排放量前三名為美國、中國及俄羅斯,台灣則排名全球第22名。   主計處表示,依 IEA 統計資料庫顯示,二○○二年全球二氧化碳排放量前六名為美國(57.1億噸,占全球23.3﹪)、中國(34.7億噸,占14.2﹪)、俄羅斯(15.2億噸,占6.2 ﹪)、日本(11.8億噸,占4.8 ﹪)、印度(10.5億噸,占4.3﹪)及德國(8.5億噸,占3.5 ﹪)。台灣則排第 22 名(1990年為第28名),排放量占全球總量約1﹪,而經濟發展程度與我國相近的南韓、新加坡排名分別為第9名(4.7億噸,占1.9﹪)及52名(5500萬噸,占0.2﹪)。    行政院主計處據工研院能源與資源研究所統計,公佈最新「我國燃料燃燒排放二氧化碳」概況,台灣溫室氣體排放以二氧化碳為最大宗,佔八成以上,至二○○四年為 2.6億噸。   主計處指出,為抑制人為溫室氣體排放導致全球氣候變遷加劇現象,聯合國在一九九二年通過「聯合國氣候變化綱要公約」,且為落實排放管制工作,具有約束效力的「京都議定書」,已在今年二月十六日正式生效,期使在二○○八至二○一二年間,六種溫室氣體排放量平均應削減至比一九九○年低五‧二 %水準。在全球持續增溫、海平面上升及氣候變遷加劇下,台灣雖非京都議定書締約國,但政府相關部會順應國際永續發展潮流,正積極落實檢討溫室氣體排放減量政策。

歐盟執委會發布新產業策略指導方針,協助企業面對氣候中和及數位領導轉型之挑戰

  歐盟執委會於2020年3月10日公布產業策略指導方針,名為「因應全球競爭、綠色、和數位歐洲的新產業策略」(A new industrial strategy for a globally competitive, green and digital Europe),以幫助歐洲產業在面臨近年氣候中和及數位領導變遷時,因轉型而產生的過渡期。此次公布的產業策略指導方針,包含三大主題,分別是:(1)新產業策略(A new industrial strategy)、(2)新中小型企業策略(A new SME strategy)以及(3)企業與消費者的單一市場(A single market that delivers for our businesses and consumers);而其中又以「新產業策略」為該指導方針之重點。   為提升歐洲的產業領導地位,「新產業策略」中論以三個關鍵優先事項,分別為:維持歐洲產業的全球競爭力和公平競爭環境、2050年以前達成氣候中和(climate-neutral)目標,以及塑造歐洲未來數位化。為達成前述優先事項,歐盟執委會提出一系列未來行動: 推行智財權行動計畫(Intellectual Property Action Plan)以保護歐盟技術主權,並採行適合綠色和數位轉型的法規框架; 持續檢討修正歐盟競爭相關法令(EU competition rules),確保法規能適應快速變化的經濟環境; 為維護產業在歐盟境內外的公平競爭環境,執委會將於在2020年中以前出版白皮書,處理歐盟單一市場中因外國補貼而引起的扭曲效應,以及歐盟境內的外國採購和外國資金問題; 推行關鍵原料行動方案(Action Plan on Critical Raw Materials),確保關鍵原物料穩定供應;支持戰略數位基礎設施和關鍵技術發展,增強歐洲產業及戰略自主地位; 其它則有對綠色公共採購進一步立法、發展低碳產業和技術、支持永續型智慧交通產業等。

以『江蘇科技改革30條』解析中國大陸科研經費改革制度

  中國大陸近年致力發展其國內技術研究產業,但在基礎研究經費申請制度上,長期存在一些結構問題,如在科研資助、實施和成果傳播三個階段。故自2017年起,中國大陸陸續修正關於科研經費制度,以使科技研究人員得以順利進行科研項目。截至目前,依中國大陸國發〔2018〕25號文為基準,江蘇省推出《關於深化科技體制機制改革推動高品質發展若干政策》(下簡稱『江蘇科技改革30條』),並出台完整的實用手冊 。   此次江蘇科技改革30條,明確落實中央對科研經費鬆綁及對科研結果獎勵與容錯的改革措施。在科研經費可直接列支項目的直接預算,如設備費、材料費等,從原本九個項目改合併為五個項目,科目經費支出將不再受比例限制;另在無法直接羅列預算項目的間接預算上,如績效支出等費用則精簡列支項目,提高間接費用核定比例。在科研結果獎勵與容錯改革上,建立原創成果獎勵機制、創新補償機制、援助機制及免責機制。   中國大陸科研經費長期採用嚴格預算制,直接預算需按照法律規範羅列,然間接預算部分常使研究人員因不知如何羅列,而導致研究經費中斷或減少。對於較易失敗的基礎研究上,研究人員則擔心在階段性考核中因錯誤致使研發經費無法取得,進而將錯就錯,謊報研究成果。此次江蘇科技改革30條修正,解決了上述科研經費制度的部分問題,並具體規範了實務上的操作。然各部會間如何解決關於監管經費結餘規範之法律衝突,及科研成果容錯機制之評價,仍待後續觀察。

TOP