歐盟於2016年5月公布將成立個人化醫療國際聯合會(International Consortium for Personalised Medicine, IC PerMed),並草擬發展倡議。其成立背景為目前用來治療大部分病人之一般藥品效果未如預期,且因藥物嚴重副作用導致需急性醫療入院情形,約超過60%之比例。此外,歐盟的醫療照護成本將隨著人口老化以及慢性疾病增加而加重。個人化醫療具有特定預防目的以及治療方法,因此,病人利用最佳的治療方是,可避免試驗與治療錯誤之問題。個人化醫療是一個快速成長的市場,歐洲醫療照護產業具有發展潛力,並同時帶來經濟成長與就業機會。
歐盟認為,儘管個人化醫療尚未有明確定義,但依據Horizon2020諮詢小組(Horizon 2020 Advisory Group)定義為利用個人表現型或基因型特徵之醫療模型,針對正確的個人、治療時間,以明確的醫療政策為目標進行診治,或者是找出疾病特徵給予即時的預防。其中,重要部份在於,個人化關注的不僅是藥品或醫療產品,尚需對於生物機制以及環境與疾病、健康之間的交互作用等進行瞭解是否影響整體的健康照護。雖然歐洲部分國家已經開始引進個人化醫療,但實際上歐洲仍處在早期執行階段,尚待更多的研究開發。
為此,歐盟執委會與部分健康研究機構以及決策組織團體等共同合作,決議成立個人化醫療國際聯合會,目標為2016年底之前開始此項計畫。歐盟執委會與IC PerMed組織成員合作,將進行以下事項:
1.將歐洲建立成為全球個人化醫療研究領導者地位
2.透過合作研究支持個人化醫療醫學
3.將個人化醫療的利益展現於民眾以及醫療照護體制
4.為精準醫療提供給民眾做好準備
IC PerMed將聚焦在研發補助與合作,以實現上述所設定之任務。目前,IC PerMed正研擬發展倡議藍圖。依據草擬之藍圖,IC PerMed將提供各組織成員之間彈性合作架構。藍圖主要建構於個人化醫療歐洲願景(Shaping Europe’s Vision for Personalised Medicine)之相關文件,該文件屬於政策研發議程(Strategic Research and Innovation Agenda, SRIA)之一部分,同時為先前歐盟所補助之PerMed(2013~2015)計畫範圍之一。依據PerMed SRIA,發展可區分為五項領域,包括: 發展過程與結果、整合巨量資料與ICT解決模式、將基礎轉為臨床研究、將研發鏈結市場、以及形成延續性的醫療照護體系。未來,IC PerMed發展倡議藍圖將依上述五個領域建構,並在2016年底預計公布第一部分的施行願景。
新加坡於2010年5月19日修正通過電子交易法,並於7月1日正式施行。此次新修正之「電子交易法」,是依據新加坡資通訊發展局(Infocomm Development Authority,IDA)及司法部於2004到2005年間推行之公眾意見諮詢,進行法條之全面翻修。作為電子交易法制之先驅國家,新加坡於此次修法中納入聯合國「跨國契約中使用電子通訊公約」(United Nations Convention on the Use of Electronic Communications in International Contracts)之相關規定,此一公約旨在促進全球之電子通訊及交易以相同之法律模式加以運作。 該法之修正係為因應新加坡電子商務之日趨成長以及國民對電子化政府之需求,以建立新加坡成為全球可信賴之資通訊中心。此次修正重點如下: 一、參照聯合國「跨國契約中使用電子通訊公約」之規定,調整電子簽章之要件以及對於收發電子文件時間與地點之認定。納入以自動處理訊息系統做為契約訂立之方式,以電子文件作為正本以取代實體書面之正本文件,並就電子交易中要約之引誘以及電子通訊中發生錯誤時之解決方式加以規定,使新加坡之法律制度能與國際電子商務法律制度接軌。 二、促進民眾及企業與政府機關進行互動時,更有效率地使用電子文件相關服務,以加強電子化政府服務之應用。如提供綜合性電子表格,讓使用者僅需填寫一次相關資訊,即能利用不同種類的電子化政府服務。 三、對憑證管理中心之規範採用技術中立的認證架構,未來憑證管理中心不一定要使用公開金鑰基礎建設(Public Key Infrastructure,PKI)之相關技術作為提供驗證服務之方式,相對地,在其他技術逐漸開發之狀況下,也可採用其他技術提供驗證服務,如生物鑑識技術。當然,主管機關仍會以相同標準對採用不同驗證技術之憑證管理中心進行監督,以確保憑證服務之安全性及有效性。 。
美國醫療保險將為醫院提供鐮狀細胞疾病基因療法的創新支付鼓勵措施美國醫療保險和醫療補助服務中心(Centers for Medicare and Medicaid Services, CMS)於2024年4月10日發布了2025財年(Fiscal year 2025, Oct. 1, 2024, to Sept. 30, 2025)醫療保險醫院住院預期支付系統(Inpatient Prospective Payment System, IPPS)規則草案(proposed rule)。 考量到細胞療法費用高、可近用性低,2025財年規則草案便包含為醫院提供治療鐮狀細胞疾病(Sickle Cell Disease, SCD)基因療法,其新技術附加支付(New Technology Add-on Payment, NTAP)附加百分比從原本的65%提高到75%的創新支付措施。 NTAP方案是2001年由CMS推出,旨在激勵醫院採用新技術和新療法。NTAP規定新的醫療服務或技術必須滿足以下3個標準,才有資格獲得附加支付: 1.新穎性:醫療服務或技術必須是新的。一旦此治療已經被認為不是新技術,附加支付就會結束。 2.費用過高:醫院在使用新技術時,可能會產生成本超出標準的住院病患支付限額,該技術在現有醫療保險嚴重程度診斷相關群組(Medicare Severity Diagnosis-Related Groups, MS-DRG)系統下不足以支付。 3.實質的臨床改善:與目前可用的治療方法相比,使用該技術其臨床資料必須要顯示確實能改善特定病人群體的臨床結果。 NTAP透過提供經濟激勵,支持醫療機構在初期階段採用新技術,從而促進醫療創新並改善患者治療效果。SCD為一種遺傳性疾病,對美國黑人影響嚴重,且治療選擇有限。因此該創新支付鼓勵措施將使醫院可以獲得更多的資金來執行昂貴的SCD基因療法,進一步促進SCD病人獲得最新的治療,且能減少SCD長期醫療照護的相關成本。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
美國紐約州通過「防止非法侵入與加強電子資料安全法案」2019年7月25日,紐約州州長Andrew Cuomo簽署「防止非法侵入與加強電子資料安全法案」(S.5575B/A.5635/Stop Hacks and Improve Electronic Data Security Act, 又稱SHIELD Act),目的在讓處理消費者個人資料的企業承擔更嚴格的責任。其核心精神在於,一旦發生與資料外洩相關的安全漏洞時,能及時進行適當的通知。同時,修改紐約州現有的資料外洩通知法,擴大個資蒐集適用範圍、個資定義 (例生物特徵、電郵資訊等)及資料洩漏定義、更新企業或組織之通知程序、建立合於企業規模之資料安全要求。此外,如違反通知義務,將處以最高5千美元或每次(未履行通知義務)20美元 (上限25萬美元)的民事賠償。且美國司法部長(The Attorney General) 亦得以紐約人民名義,代為起訴未實施資料安全規畫的企業,並按紐約民事執行法與規則(The Civil Practice Law And Rules)第63條進行初步救濟,依法強制禁止侵害行為繼續發生。該法預計將於2020年3月1日生效。 當天州長亦簽署「身份盜用預防措施和緩解服務修正案」(A.2374/S.3582),新增資料外洩安全保護措施,要求消費者信用機構,提供受安全漏洞影響的消費者「身份盜用預防措施」(Identity Theft Prevention )與「緩解服務」(Mitigation Services),為消費者制定長期最低度的保護手段。其要求信用機構,通知消費者將有關社會安全號碼的資料洩漏事件進行信用凍結,並提供消費者無償凍結其信用的權利。該法預計將於2019年10月23日生效,並且溯及既往適用該法案生效之日前三年內所發生之任何違反消費者信用安全的行為。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。