美國白宮在2016年6月16日舉行「提升智慧電力市場再生能源與儲能行動方案高峰會」,並於會後公布「聯邦政府與私部門提升智慧電力市場再生能源與儲能現況簡報」(Federal and Private Sector Actions on Scaling Renewable Energy and Storage with Smart Markets)等全美在此領域所採的各項措施。
白宮指出:目前透過新的行政部門行動措施與33州政府及私部門的承諾,除了將加速再生能源與儲能的電網整合,並預計在未來5年增加1.3GW的儲能採購與部署。
在聯邦政府方面,相關的行動包括白宮經濟顧問委員會(White House Council of Economic Advisers)就整合再生能源的電網技術與經濟面向發佈新報告、聯邦政府承諾進行增加聯邦與軍事基地的儲能與微電網的計畫,並提供偏鄉社群微電網建置資金,與能源部(DOE)促進能源資料的使用與標準化。
在私部門方面,相關的行動則有16家電業在至少8州公布未來5年的儲能採購與部署目標、投資人承諾在能源儲存領域投入1億3千萬美元資金,和電力公司與開發商承諾部署智慧熱水器、智慧電表,與需量反應計畫。
在上述措施中,加州公共事業委員會(California Public Utilities Commission, CPUC)承諾為更可靠的電網建立管制架構,並使用戶可從不同的分散型能源資源選擇,同時促進智慧電表與電網運作情形資料的蒐集、分析與散佈。
而綠色按鈕聯盟(Green Button Alliance)則宣布將以示範計畫提供聚集、匿名的能源使用資訊供研究與公益使用。目前規劃此示範計畫將由參與的電業透過智慧電表部署所提供的匿名能源使用資訊建立資料庫。
2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。
歐盟發布《歐洲資料治理規則》草案歐盟執委會於2020年11月25日公布「歐洲資料治理規則」(Proposal for a Regulation on European data governance (Data Governance Act))草案。本立法草案係延續同年2月發布「歐洲資料戰略」(European data strategy)所提出之立法規劃,針對該戰略所揭示的資料治理政策願景,於制度面予以明文化。而本草案亦為該戰略發布後,首次提出的具體性措施。其制定的主要目的,在於透過強化資料中介機構(data intermediaries)的公信力、以及優化歐盟整體的資料共享機制,來提升資料的可取得性(availability)。 依草案條文內容,其主要立法面向如下: (1)界定本法的立法目的,在於規範歐盟內部再利用公部門所持有之特定類型資料的條件,確立資料共享服務的通報與監督框架,並針對基於利他(altruistic)目的蒐集處理資料之實體(entities),建構自願註冊的制度;另一方面則進行本法的名詞定義。 (2)公部門資料再利用機制:整體性規範由公部門所持有、但涉及商業機密、智慧財產權、個資等之資料再利用的一致性標準。其以保護既有的營業秘密、個資、智財權等為前提,確立該些資料再利用的標準作法(如原則以非專屬形式再利用、可收取合理費用)。有意再利用上述資料的公部門,應於技術面保護其隱私與機密性。 (3)針對資料共享服務供應商的通報機制:要求提供資料共享服務的供應商,於正式對外提供其服務前,應先向各成員國的權責機關通報其業務,藉以增加外界對共享個資與非個資之資料機制的信賴度,同時降低資料共享的交易成本。同時,資料共享服務供應商於資料交換應保持中立,不能為其他目的使用資料;其共享服務應以開放及協作的方式進行,並優化自然人或法人查閱與控制其資料的環境,藉以強化個資自主權。 (4)資料利他主義(data altruism)的明文化:定義非營利、具普遍性共同目標之組織,得向歐盟註冊成為資料利他主義組織。透過此認證制度,增加組織公信力,以推動個人或公司出於公共利益,自願提供資料。同時,授權歐盟執委會可制定通用之歐洲資料利他主義同意書(European data altruism consent form),減少個別收集資料使用同意書之成本。 (5)成員國資料共享權責機關之職責:其應公正、透明、一致、及時履行其職責,監督與實施資料共享服務供應商與資料利他主義組織的通報與註冊機制。例如,其有權要求資料共享服務供應商提交必要訊息,以確保其作為是否符合本法要求。同時,權責機關成員不得為資料共享服務的供應商。 (6)歐洲資料創新委員會(European Data Innovation Board):此為一專家小組之設置要求,負責協助成員國權責機關之作法,遵循資料治理法所訂標準。
美國OMB發布人工智慧應用監管指南備忘錄草案美國行政管理預算局(United States Office of Management and Budget, OMB)於2020年1月發布「人工智慧應用監管指南(Guidance for Regulation of Artificial Intelligence Applications)」備忘錄草案。該備忘錄草案係基於維護美國人工智慧(AI)領導地位之目的,而依據美國總統川普(Donald John Trump)於2019年2月簽署之「維持美國人工智慧領導地位(Maintaining American Leadership in Artificial Intelligence)─行政命令13859號」,並在啟動美國人工智慧計畫後180天內,經OMB偕同科技政策辦公室(Office of Science and Technology Policy, OSTP)、美國國內政策委員會(United States Domestic Policy Council)與美國國家經濟委員會(National Economic Council)與其他相關機構進行協商,最後再由OMB發布人工智慧應用監管指南備忘錄草案,以徵詢公眾意見。 該備忘錄草案不僅是為了規範新型態AI應用技術,更希望相關的聯邦機構,在制定AI應用產業授權技術、監管與非監管方法上,能採取彈性的制定方向,以避免過度嚴苛的規定,反而阻礙AI應用的創新與科技發展,繼而保護公民自由、隱私權、基本權與自治權等價值。同時,為兼顧AI創新與政策之平衡,應以十大管理原則為規範制定之依據,十大管理原則分別為: 培養AI公眾信任(Public Trust in AI); 公眾參與(Public Participation); 科學研究倫理與資訊品質(Scientific Integrity and Information Quality); AI風險評估與管理(Risk Assessment and Management); 獲益與成本原則(Benefits and Costs); 彈性原則(Flexibility); 公平與反歧視(Fairness and Non-Discrimination); AI應用之揭露與透明化(Disclosure and Transparency); AI系統防護與措施安全性(Safety and Security); 機構間之相互協調(Interagency Coordination)。 此外,為減少AI應用之阻礙,機構制定AI規則時,應採取降低AI技術障礙的方法,例如透過聯邦資料與模型方法來發展AI研發(Federal Data and Models for AI R&D)、公眾溝通(Communication to the Public)、自發性共識標準(Voluntary Consensus Standards)之制定及符合性評鑑(Conformity Assessment)活動,或國際監管合作(International Regulatory Cooperation)等,以創造一個接納並利於AI運作的環境。
德國因應歐盟一般資料保護規則(GDPR)之通過,即將進行該國資料保護法(BDSG)修正德國聯邦資訊技術,電信和新媒體協會(bitkom)於2016年9月2日釋出將以歐盟新制定之一般資料保護規則(GDPR)內容為基礎,調整德國聯邦資料保護法(BDSG)之修法動向。 德國政府正在緊鑼密鼓地調整德國的資料保護立法,使之與歐盟GDPR趨於一致。已知未來將由“一般聯邦資料保護法”取代現行的聯邦法律。草案內容雖尚未定稿,但修正方向略有以下幾點: 首先,德國未來新法不僅參考GDPR、也試圖將該法與GDPR及歐盟2016年5月4日公告之歐盟資訊保護指令Directive(EU)2016/680相互連結。該指令係規範對主管機關就自然人為預防,調查,偵查等訴追刑事犯罪或執行刑事處罰目的,處理個人資料時的保護以及對資訊自由流通指令。 其次,新法將遵循GDPR的結構,並利用一些除外規定,如:在資料處理時企業應指派九人以上資料保護官(DPO)的義務。某些如通知當事人的義務規定,亦有可能在存有更高的利益前提下,限縮其履行範圍。此意味某些通知義務有可能得不適用,例如履行該義務需要過於龐大人力、資金支出、耗費過多等因素。 第三,聯邦法律將保留一些規定,如上傳給信用調查機構的條款、雇傭契約中雇用方面處理個人資料的條款,以及在公眾開放地區使用電子光學裝置監視的條款等。 最後,立法修正動向值得注意的重點尚有,(1)未來德國立法者將如何應對新的歐洲資料保護委員會(EDPB)中德國代表的地位(represe。由於EDPB將發布具有約束力的決定,針對爭議內容的決定意見,德國內部顯然應該統一意見。蓋因迄今為止的德國聯邦資料保護監察官(17個)經常提出不同的見解。此外,(2)還應該觀察聯邦資料保護監察官是否應該賦予權限,向法院提出對歐盟爭議決定或法律救濟,使案件進入德國法院,以爭執歐盟執委會所為之決定是否具備充足理由。前此,德國聯邦參議院(代表十六邦)2016年5月已要求聯邦政府引進新規定,使資訊監察保護官有請求法院救濟之權。這項源於安全港協議判決的討論,將來有可能提供德國資料保護監察官,挑戰隱私盾協議的可能性。但新法案是否會解決這一問題,這還有待觀察。 可預見在2017年9月下一屆德國聯邦議會選舉前,將通過法案。