日本「u-Japan政策」簡介

刊登期別
2005年12月,第220期
 

相關附件
※ 日本「u-Japan政策」簡介, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=763&no=67&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
歐盟修正重型車輛碳排放規定,擴大適用範圍並提高減排目標

歐盟於2024年4月26日通過重型車輛二氧化碳排放性能標準(Regulation (EU)2019/1242)修正案,加速交通運輸部門的脫碳進程,以實現2050年淨零排放目標。修法重點如下: (1)擴大適用範圍:除了現有的卡車外,亦納入市區公車、長途巴士(7.5噸以上)、拖車等車型,如垃圾車等特種車輛也將從2035年起納入管制。而歐盟執委會將於2027年評估是否將5噸以下小型貨車也納入規範。 (2)明確減排目標:要重型車輛的二氧化碳排放量在2030年、2035年和2040年分別較2019年減少45%、65%和90%。求2030年起,90%的新售市區公車必須為零排放車輛,並在2035年達到100%零排放。 (3)技術中立原則:允許製造商選擇電動化、氫燃料電池或氫內燃機等不同技術路線來達成減排目標。 (4)豁免及彈性條款:針對礦業、林業和農業用車,以及軍用、緊急救災和醫療用途車輛等特殊用途車輛,或年產量低於100輛的小型製造商,新法將不強制納管。且為確保產業公正轉型,歐盟也提供相關培訓和資金援助,協助產業轉型和勞工技能提升。 歐盟執委會將於2027年評估這項規範的實施成效,並考慮納入更多車型、制定全生命週期碳排放計算方法,以及評估可再生燃料在交通運輸部門脫碳進程中的作用。

美國俄亥俄州推出「個人隱私法草案」

  2021年7月13日,美國俄亥俄州(下稱俄州)副州長Jon Husted宣布推出《俄州個人隱私法》(Ohio Personal Privacy Act, OPPA,下稱本法),這是美國近期最新州級別的個人隱私保護法草案,並提出企業可資遵循隱私標準俾該州消費者隱私之保護。   首先,本法草案除賦予該州消費者知悉權、近用權、刪除權外,更賦予資料銷售退出權(right to opt out sales)及不受歧視權(right to discrimination)。並於俄州境內規範三種企業:(一)年營收逾2,500萬美元;(二)單一年度內經手10萬名以上消費者個資;(三)年營收半數源自於個人資料銷售且經手2.5萬名以上消費者個資。   惟所稱企業,排除如:州立機關或機構、受管制之金融機構及其附屬單位、實體或關係組織、高等教育機構等;至所稱消費者個資,則排除如:法規保護之個資(如健康資訊及紀錄、病患辨識資訊、人類受試者之個資及相關資訊、病患安全工作成果、個人信用等)、依法(如駕照法、家事法、醫療法及本法等)所得個資或依法授權得使用於公衛之資訊等。   特別的是,如企業違反本法,消費者並無獨立訴訟權,其執法權專屬州總檢察長。因此,如本法日後通過並施行,無論對俄州企業抑或消費者權益之影響,均有待觀察。

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

日本發布2020年統合創新戰略,聚焦疫後科研與創新政策

  日本內閣府在2020年7月17日發布「2020年統合創新戰略(統合イノベーション戦略2020,下稱創新戰略2020)」政策文件。創新戰略為內閣府轄下綜合科學技術與創新會議(総合科学技術・イノベーション会議)依據日本科學技術基本計畫,自2018年起固定於每年度發布。其目的係自全球性的觀點出發,提出含括科研創新之基礎研究至應用端的整體性策略。本年度創新戰略著眼於COVID-19疫情流行與世界各地大規模災害頻仍下,日本科研與創新政策所面臨的課題以及應採取的對策,並擴大科研領域,納入人文社會科學。   創新戰略2020指出,因COVID-19疫情影響,醫療體系、社經生活與研發活動皆受到程度不等的衝擊,包含零接觸經濟興起、社交方式改變與實體研究室關閉等。與此同時,美中科技對抗、GAFA數位壟斷爭議、極端氣候與天然災害等國內外情勢變遷快速。在此背景下,日本的首要課題為建構不間斷且強韌的醫療、教育、公共事業等社會服務體系,維繫國內外社會的鏈結。為此,應透過加速數位化,促成創新活動,同時強化研發能量,實現以人為本的「Society5.0」之社會。 基此,創新戰略2020提出了以下四項具體對策: (1)建立足以應對疫情困境、具韌性的社會經濟體系:在公衛醫療體系,進行疫苗與醫療儀器之研發,並運用數位科技傳遞訊息;因應科研創新與產學合作受疫情影響停擺,給予及時資助,如培育年輕創業者、提供推動引導研發補助(開発研究促進助成金,通稱Gap Fund)等;推動教育、研究、物流等各領域的數位化,同時自經濟安全保障的觀點,強化供應鏈韌性。 (2)創新創造:透過官民合作,實踐智慧城市的構想;同時持續推動「STI for SDGs路線圖(STI for SDGsロードマップ)」政策;藉由實踐研究誠信(研究インテグリティ),加強與國際網路合作;另一方面,應發展post 5G與Beyond 5G等前瞻數位基礎技術,並持續建置各領域的資料流通基礎設施。 (3)強化科研與創新之研究能量:建立能充分吸引年輕人才挑戰、進行創新研發的研究環境,同時成立基金以建構世界級的研究基礎設施;以充分活用大學研發成果為目標,檢討智財制度發展的願景;結合人文社會科學領域研究,並活用射月型研發(ムーンショット型研究開発)制度,發展社會問題解決方案。 (4)重要科技發展項目:於基礎技術層次,包含AI、生化科技、量子技術、材料等,對此應優先投入研發、培育相關人才;於應用科學層次,則包含防災、防疫、資安、能源、健康醫療、航太、糧食、農漁產業等。

TOP