中國國家互聯網信息辦公室於2025年2月12日公布《個人信息保護合規審計管理辦法》(下稱《辦法》)及其配套指引,自2025年5月1日正式實施。《辦法》及指引的發布,旨在落實《個人信息保護法》中的稽核規定,完善個資合規監督架構,為企業提供執行審計的制度依據。 《辦法》區分合規審計為兩大形式:企業可自行或委託專業機構定期進行審計;另當主管機關發現高風險處理活動或發生重大資料外洩事件時,有權要求企業限期完成外部審計,並提交報告。針對處理規模較大的企業,《辦法》特別規定,凡處理超過1,000萬人個資的業者,須至少每兩年完成一次審計。 針對大規模蒐用個資企業,《辦法》亦強化其配合責任,對於處理超過100萬人資料的企業,須設置個資保護負責人;對大型平台服務業者,則須成立主要由外部人員主導的獨立監督機構,以確保審計客觀性。 在審計執行層面,《辦法》對第三方審計機構的條件、獨立性與保密義務提出具體要求,並禁止將合規審計轉委託,防堵審計品質不一,或個資分享過程增加外洩風險。同時,也規範同一機構或審計負責人不得連續三次審計同一對象,以強化審計公正性。 《合規審計指引》進一步列出具體審查項目,包括處理合法性、告知義務、資料共享、敏感及未成年個資保護、境外傳輸、自動化決策與安全措施等,協助企業全面落實個資合規審查。
美國聯邦上訴法院認定,美國政府不得強取境外伺服器資料微軟在美國政府索要用戶郵件的一起官司中獲得勝訴。美國政府第二巡迴上訴法院裁決,如果資料是儲存在美國境外伺服器,則不為美國聯邦政府的令狀效力所及。 這件訴訟案源於2013年的一起涉外毒品案件中,紐約區法院發布了一項搜查令,要求微軟提供公司一名用戶的郵件和相關訊息。然而因為有些資料是存放在微軟公司在愛爾蘭的伺服器,因此微軟爭辯說郵件本身是儲存在愛爾蘭的,因此不應受到美國政府令狀效力所及。2014年聯邦地方法院再次要求微軟提供郵件內容——但微軟上訴到了聯邦第二巡迴法院。 美國聯邦第二巡迴法院在判決中,認定基於《儲存通訊記錄法》(Stored Communications Act:SCA/下稱SCA)規定美國政府得以令狀要求連結網路使用者資料的規定並不適用於境外。法院所持理由為: 1. SCA規定搜索票/扣押票之核發應符合美國聯邦刑事訴訟法之相關規定,而美國聯邦刑事訴訟法第41條即規定搜索票/扣押票應由搜索/扣押標的物所在地之法院核發並交由該地或國內他地執法人員執行。 2. 法院曾於2010年之MORRISON ET AL. v. NATIONAL AUSTRALIA BANK LTD. ET AL.案判決理由中指明,如國會立法時認為某法規可能或必須有域外效力,應以明文定之,而SCA條文中並無任何規定寫明該法可於境外適用之。 3. SCA在第2703條所使用之搜索票/扣押票(warrant)一字,源自美國憲法增修條文第四條,即規定美國政府對其國內人民為搜索扣押時應以搜索票/扣押票(warrant)為之,且SCA更刻意以不同條款及不同強度區分搜索票/扣押票(warrant)與傳票(Subpoena),立法者之用意顯然是希望能以前者提供使用者更高度的隱私保護。 這是美國首例企業對獲取境外資料的政府搜查令提起上訴的案件,審判結果影響著美國法律界對於執法機關是否能就存放在世界上其他國家的美國用戶資料,進行合法調查。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。