區塊鏈技術具有去中心化、透明性、開放性、自治性、訊息不可篡改、匿名性等六大特徵,可加密記錄該系統上所有使用者之行為資訊,並使該資訊不易篡改。其最初被運用在虛擬貨幣比特幣(Bitcoin)的建構,發展至今應用已拓展至諸多領域,包括對智慧財產權的保護。美國的blockai網站即是將區塊鏈技術運用於智財保護的實例之一,美國過去由國會圖書館負責著作權之管理之作法,在程序上曠日費時且效率不彰,故blockai於2015年創立於美國舊金山,旨在提供著作人更簡單有效的選擇。其作法係由著作人於blockai註冊帳號後進行作品之註冊並取得一相應之著作權證書,並由blockai以區塊鏈技術建立公眾資料庫,透過區塊鏈不可篡改、透明開放等技術特徵來證明作品確由著作人創作,利於後續舉證維權。現階段blockai開立之證書雖未被授與法律上地位,但依區塊鏈的技術特徵,可望成為法庭攻防上著作人有力之科學證據。
揆諸我國相關法律,我國非採著作登記制,著作人為維護自身權利需先證明系爭著作為自己所創作,惟訴訟實務上著作人多半舉證不易。若參考美國作法導入區塊鏈技術落實著作權保障,或可作為科技整合法律之新標竿。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
由美國商會(the United States Chamber of Commerce)於2007年成立的全球智慧財產中心(Global Intellectual Property Center,以下簡稱GIPC)發布2017年國際智慧財產指數排名,前三名分別為美國、英國和德國,而泰國在45個經濟體中排名第40名,在滿分35分的評分中僅得到9.35分。指數的計算方式係基於專利、著作權、商標、營業秘密、執法、國際條約的批准和執行狀況等6個智財保護面向,共35個指標組成。 GIPC指出,泰國關鍵優勢在於具備商標、著作權和設計專利的基本註冊和保護制度,具備智財權執行的基本法律架構,配合新技術的發展試圖調整著作權的法規,改進部份海關防止仿冒的措施。而得分低的主要原因則為專利保護不足、數位著作權制度不完整、智財資產商業化的繁鎖程序和額外成本、仿冒猖獗和執法不力等。 泰國智慧財產局(the Department of Intellectual Property,以下簡稱DIP)局長表示美國商會未充分考慮泰國在智慧財產權發展方面的努力。泰國是按與貿易有關之智慧財產權協定(Agreement on Trade-Related Aspects of Intellectual Property Rights,以下簡稱TRIPS)的要求提供智財保護,然GIPC的部份指標較TRIPS的要求嚴格,導致泰國得分偏低;且指標評估者僅為美國商界人士,而非所有利害相關人。不過DIP也表示,儘管在推動泰國智慧財產權保護方面存在諸多困難,同時需要與包括衛生部、海關廳、財政部、國家警察總署、特安廳以及數位經濟和社會部等部門合作開展,DIP仍將繼續推動各項工作進展,努力提高泰國在國際智財指數的排名。 【本文同步刊登於TIPS網站(http://www.tips.org.tw)】
CAR-T細胞治療產品Yescarta美國專利侵權訴訟逆轉勝,CAFC認定專利不符書面說明要件而無效Gilead Sciences之子公司Kite Pharma(以下簡稱Kite)所推出之Yescarta®(Axicabtagene Ciloleucel)為治療復發型或難治型瀰漫性大B細胞淋巴瘤(Diffuse Large B-Cell Lymphoma, DLBCL)之CAR-T細胞治療產品,其為美國FDA第二個核准上市之CAR-T產品。 上述產品於2017年獲美國FDA核准上市後,Juno therapeutics公司隨即於美國加州中區聯邦地院起訴Kite,主張Yescarta侵害Juno therapeutics之美國7,446,190號專利「編碼嵌合T細胞受體之核酸(Nucleic acids encoding chimeric T cell receptors)」(以下簡稱190專利),2019年陪審團認定Kite成立專利侵權,裁定損害賠償額為7.78億美元;於2020年法院進一步認定Kite有蓄意侵權行為,再判定需增加50%之損害賠償金,使損害賠償總額超過11億美元。 本案上訴後,美國聯邦巡迴上訴法院(US Court of Appeals for the Federal Circuit, 以下簡稱 CAFC)於2021年8月26日推翻原審判決,認定190專利不符書面說明(Written Description)要件而無效。CAFC認為190專利請求項所請求之單鏈可變區片段抗體(single-chain variable fragment, scFv)結合部涵蓋過廣,包括可結合「任何」標的之「任何」scFv,惟其說明書未能提供其中之代表性物種(species)、或界定其共通結構特徵,於說明書中僅揭露可結合兩種不同標的之兩種scFv作為實施例,但未能說明此二物種如何、或是否能夠代表其所請求的整個上位之屬(genus)。CAFC指出,若要滿足書面說明要件之要求,說明書應揭露與代表性數量之標的結合之特定scFv物種,Juno雖提出專家證詞主張此二scFv實施例已具代表性,惟CAFC仍認為該證詞過於籠統而未能解釋何種scFv將與何種標的結合。CAFC指出,書面說明要件之目的在於確保專利排他權範圍不會超出發明人記載於說明書中之貢獻範圍,190專利發明人證稱其申請發明時只使用過說明書所載之兩個scFv實施例,且說明書未提供確認何種scFv將結合至何種標的之方法與指導,但190專利卻請求可與任何標的結合之scFv,因此,190專利之揭露內容未能證明發明人擁有結合至各種選定標的之所有可能scFvs,無法滿足書面說明要件之要求。 醫藥專利以上位請求項(genus claim)尋求保護時,可能因說明書記載內容不容易滿足書面說明與可據以實施(Enablement)要件而受到挑戰。除本案外,美國近期亦有數件醫藥專利因不符書面說明要件與可據以實施要件而被宣告無效,如Amgen Inc. v. Sanofi(Fed. Cir. 2021)、Idenix Pharmaceuticals LLC v. Gilead Sciences Inc.(Fed. Cir. 2019)、Enzo v. Roche(Fed. Cir. 2019),未來醫藥專利以上位請求項尋求保護是否會變得更加困難,值得繼續觀察。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
基因資訊醫療應用與被害人承諾