所謂中國大陸《網路預約出租汽車經營管理暫行辦法》,是指中國大陸針對目前在各國都陸續發生法律爭議的網路出租車叫車平臺,例如源自美國加州舊金山的優步(Uber),或是中國大陸當地發展的滴滴打車服務,所制定的專法規範,以期解決網路出租車叫車平臺所可能產生的法律爭議。
類似Uber的服務型態,之所以會產生法律爭議,主要是因為汽車運輸載客的商業行為,在各國都會受到汽車運輸業的相關管制,以保障運輸服務乘客安全及消費權益。以德國為例,就曾因此對Uber進行行政處罰,並進一步於司法判決中要求Uber司機需取得營運牌照。
也因此中國大陸交通運輸部在2016年7月14日通過,並於2016年11月1日起施行《網路預約出租汽車經營管理暫行辦法》,該規定將網路預約出租汽車服務定義為「預約出租客運」,平台業者需負擔車輛營運、收益分配與司機管理等等的任務,且其地位為中國大陸汽車運輸載客法規中的客運服務承運人,需負擔相當責任,而並非如Uber等所主張的其僅為仲介平台,不具客運服務承運人之地位。
此外,該辦法亦要求網路預約出租汽車之司機應滿足無交通肇事犯罪紀錄、無危險駕駛犯罪紀錄、無吸毒紀錄、無飲酒後駕駛紀錄、無暴力犯罪紀錄等條件。
本文為「經濟部產業技術司科技專案成果」
日本總務省召開的「通信‧放送政策懇談會」,於本月 6 日進行今年第 14 次集會,提出該會之最終報告。 其中,有關 NTT (日本電信電話公司)之改革,預計於 2010 年解散目前所採行的控股公司架構,將其所掌控的 NTT 東日本、 NTT 西日本(主要經營固接電話以及上網服務),以及 NTT DoCoMo (主要經營行動通訊業務)三者完全分割,成為三間各自獨立的公司;且分割以後以上三者之間的合作關係亦應受到嚴密規制。至於 NHK (日本放送協會)之改革,則計畫釋出一個衛星頻道,兩個廣播頻道,同時娛樂以及體育節目相關部門,以及網路傳輸、國際播送業務等,應與 NHK 之核心業務切割,成立子公司自行獨立經營。 上開內容雖然是因應通信與放送兩大體系日漸匯流之趨勢而生,惟論者以為勢將引發輿論以及各大政黨之議論甚至反彈;而最終能否納入政府以及執政黨目前正在研擬規劃的施政綱領,仍在未定之天,有待持續追蹤觀察。
現有法制對公立大學教授技術作價之現況與困難 美國參議院通過「寬頻資料促進法」2008年10月,美國參議院通過「寬頻資料促進法」(Broadband Data Improvement Act),由總統簽署後施行。此新法賦予機關提升寬頻有關資料正確性的義務,以精確的資料作為相關政策制定時之衡量基準。美國政府認知,必須架構最完善的寬頻網路基礎,方能保持美國在科技領域的世界領先地位,因此聯邦政府有責任持續拓展寬頻接取網絡,並著手佈建次世代寬頻技術。而此前提,在於取得精確資料供後續施政依循。 以往美國聯邦通訊委員會(FCC)蒐集寬頻相關資料的方式,常被批評不合時宜,2008年3月FCC主動改善其蒐集資料的方式,要求寬頻業者必須透過地域性人口調查方式,提供使用者人數、速度、及技術類型等資料。此新法更要求FCC表列出欠缺寬頻設施的地區,兼調查該等地區人口及收入水準,而改善寬頻接取的情形,為加速佈建寬頻環境的第一步。 除此以外,新法的要求尚包括:1、美國商業部及其他機關應促進所蒐集相關資料的正確性,以擬定較妥適政策來提升寬頻技術架構;2、FCC針對寬頻佈建展開年度例行調查,以五碼郵遞區為一地理單位,列出尚未有寬頻的地區。並依據未有寬頻服務地域的人口數據,劃定可提供最多連線且傳輸高畫質影像的寬頻服務層級。此外,研究其他25個國家與美國寬頻服務的異同點;3、美國國勢調查局(Census Bureau)應持續調查社區居民是否擁有電腦,採取撥接或寬頻連線;4、設置補助金來促進網路普及。 惟有評論家指出,該法雖立意甚佳,但直至下個會計年度通過配套法案前,政府根本沒有足夠預算可執行此法律,該法可能只是政策測溫,並無太大實質效益。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。