何謂「智慧機械」

  智慧機械產業為目前我國五大創新產業政策之一,主要目的是將臺灣從精密機械升級為智慧機械,爰此,行政院於105年7月核定「智慧機械產業推動方案」,整合我國豐沛的新創能量,建立符合市場需求之技術應用與服務能量,以創造我國機械產業下一波成長新動能。

  智慧機械之定義係指整合各種智慧技術元素,使其具備故障預測、精度補償、自動參數設定與自動排程等智慧化功能,並具備提供Total Solution及建立差異化競爭優勢之功能;智慧機械的範疇包含建立設備整機、零組件、機器人、智慧聯網、巨量資料、3D列印、網實融合CPS、感測器等產業。而智慧製造係指產業導入智慧機械,建構智慧生產線(具高效率、高品質、高彈性特徵),透過雲端及網路與消費者快速連結,提供大量客製化之產品,形成聯網製造服務體系。

  未來我國智慧機械與智慧製造領域仍待研發突破之項目有:工業用等級之視覺/觸覺/力感知等感測模組與驅動控制技術;微型感測元件智慧化;開放性標準網路通訊技術;機器型通訊及安全技術;耐延遲及低耗能機器聯網;健全人機智能介面,提升人機協同安全與效率;智慧聯網共通服務平台、資料分析與效能管理;網實融合智能系統需結合專業分析模型提升準確性及可靠度;機器人智慧整合能力及反應速度;供需產能整合與決策系統等等。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 何謂「智慧機械」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7656&no=67&tp=1 (最後瀏覽日:2025/12/22)
引註此篇文章
你可能還會想看
日本要求半導體等重要技術技轉前須進行報告,以強化技術管理

日本經濟產業省下之貿易經濟安全保障局,於2024年9月公布「建立強化技術管理之新官民對話框架」文件(技術管理強化のための新たな官民対話スキームの構築について),指出在目前複雜的地緣政治情勢下,企業難以獨自進行技術管理,故須透過強化官民對話,讓雙方可共享現況及問題,俾利政府檢討管理措施。 經產省為強化技術管理,擬修正依《外匯與外國貿易法》(外国為替及び外国貿易法,以下簡稱外為法)授權制定之省令及告示,要求業者於技轉「重要技術」時,須依外為法第55條第8項進行事前報告,以利後續透過官民對話達成共識。經產省強調,上述規定目的不是禁止技術移轉,而是進行適當之技術管理,故原則希望能透過官民對話來解決問題。惟若在雙方對話後,經產省認為有技術外流之虞時,仍會要求業者申請許可。 根據經產省於2024年9月6日公布之省令及告示修正案,以下4大領域10項技術被列為「重要技術」: 1.電子元件:積層陶瓷電容(積層セラミックコンデンサ(MLCC))、SAW和BAW濾波器(SAW及びBAWフィルタ)、電解銅箔、介電質薄膜(誘電体フィルム)、鈦酸鋇粉末(チタン酸バリウム粉体)。 2.纖維:碳纖維(炭素繊維)、碳化矽纖維(炭化ケイ素繊維)。 3.半導體:光阻劑(フォトレジスト)、非鐵金屬材料(非鉄金属ターゲット材)。 4.電子顯微鏡:掃描式電子顯微鏡(走査型電子顕微鏡(SEM))、穿透式電子顯微鏡(透過型電子顕微鏡(TEM))。

英國商業、能源及產業策略部提出新版「後2020智慧電表布建計畫」,以助於住家型智慧電表全面布建

  英國商業、能源及產業策略部(Department of Business, Energy and Industrial Strategy,以下簡稱BEIS)於2020年6月18日提出新版「後2020智慧電表布建計畫」(Smart meter policy framework post 2020,以下簡稱旨揭智慧電表計畫),擬於未來4年內全面布建住家型智慧電表,以助於住家型用電戶管理用電並進一步減低碳排放量。   依BEIS預估,布建後有可能助於節省住家型用電戶平均250英鎊之電費,並減少全國4千5百萬噸碳排放量。依旨揭智慧電表計畫,電表布建費用將由售電業負擔,售電業應盡其最大努力布建智慧電表,如售電業並未盡到此一義務,則恐將面臨高額罰鍰。同時,智慧電表之布建可以鼓勵消費者改變用電習慣,如鼓勵消費者於用電離峰時間對於電動載具進行充電,或者是設置(再生能源)發電設備用於用電高峰期間發電、饋電至電網。   從而BEIS旨揭智慧電表計畫,也是為BEIS於2019年1月提出智慧饋電保證(Smart Export Guarantee,以下簡稱SEG)鋪路。於SEG新政策下,BEIS將擬定一套不同於躉購制度之政策框架,使小型生產消費者(prosumer,此處係指可以自行生產電力之用電戶)所生產之綠色電力,可於此一政策框架之保障下,與售電業者議約,並將電力售予售電業者,以減輕英國政府預計於今年3月廢除躉購制度所帶來之衝擊。又依SEG新政策,小型生產性用電戶須設置有智慧電表,始受前開SEG新政策之保證,從而得以優惠之價格或條件將再生能源設備所產生之電力出售予電力供應事業主體。職是故,BEIS旨揭智慧電表計畫,實際上可謂與BEIS於2019年所提出SEG新政策相互搭配,以迎接後躉購制度時代之來臨。   對於智慧電表之硬體規格,依旨揭智慧電表計畫,第二代智慧電表(SMETS2)為其建置之核心。第二代智慧電表與第一代智慧電表不同之處在於,第一代智慧電表係以3G為通訊基礎,且不同電力供應事業主體所使用之系統相互間無法交流、並存,第二代智慧電表則以4G以上規格為通訊基礎,且不同電力供應事業係使用同一套系統。同時,智慧電表應盡量配置有「住家顯示系統」(In-Home Displays),使住戶可以透過視覺化之及時反饋方式,知悉現在住家內之能源使用情形以及相關電價狀況,從而進行改變用電習慣。同時,智慧電表之用電或饋電至電網之資訊,也應可以透過智慧電表傳輸至電力供應事業主體或交易市場,從而使電力供應事業主體可及時知悉用電戶之用電或饋電情形,從而及時做出反應。   對於智慧電表之建置程序以及資訊傳輸、保存安全性上,旨揭智慧電表計畫則要求應符合「智慧電表建置行為準則」(The Smart Meter Installation Code of Practice, SMICoP),從而用電戶可以在此一準則或框架下,對於自己之用電資料享有一定之掌握權限。

內政部、經濟部發佈「新建建築物節約能源設計標準」,自七月一日施行

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP