歐盟執委會下設機構策略與評估服務中心(CSES)在2016年2月向歐洲議會提出歐洲落實工業4.0政策執行分析報告,指出執行工業4.0帶來的科技、社會、以及商業環境變遷:
(1)科技變遷
數位化將對中小企業帶來挑戰,其中涉及之法律議題包括:促進數位安全致生之企業成本或風險、智慧財產權保護、個人資料與隱私、環境保護、健康和安全等。
(2)社會變遷
企業應用工業4.0技術時將面臨工作方式上之調整,整體工業4.0技術分佈不均則有可能導致集中化競爭的情形增加。
(3)商業環境變遷
隨著中小企業參與供應鏈,將帶來成本、風險、缺乏彈性、缺乏政策性的單獨運作等各方面挑戰,而重點在於藉由標準化串起整體產業,與其他的企業競爭。
我國在2016年7月通過「智慧機械產業推動方案」,以精密機械之推動成果及我國資通訊科技能量為基礎,導入智慧化相關技術,建構智慧機械產業新生態體系,並且預期能打通供需生產資訊鏈,提升人均製造力,同時併以連結在地、連結未來、連結國際為推動策略主軸,其中相關的法律議題、以及對於社會或商業環境帶來的變遷影響評估,自屬重要。
本文為「經濟部產業技術司科技專案成果」
2010年,蘋果(Apple Inc.)與法商Hachette、美商HarperCollins、美商Simon & Schuster、英商Penguin與德商Holtzbrinck/Macmillan等五家主要出版商訂定協議,改變電子書過往在市場上的銷售模式。過去電子書係由零售商(通常是網路書店)自行訂定銷售價格,而今蘋果與五家出版商透過協議,改由出版商決定電子書在網路書店的銷售價。 歐盟執委會於2011年3月對此展開反競爭(anti-competition)調查,認為這五家書商聯合蘋果公司限制零售書商定價的行為有違反競爭法之虞。根據歐盟運作條約(Treaty on the Functioning of the European Union, TFEU))第101條規定,事業間協議與一致性行為足以影響歐體會員國間交易,且以妨礙、限制或扭曲歐體共同市場競爭為效果或目的者,與共同市場不相容,應予禁止。 2012年9月,除Penguin外,其中四家出版商皆提出和解方案,承諾將終止與蘋果簽訂的代理協議,不再干涉電子書零售商調整電子書零售價格,此外,並同意未來五年內排除「最惠國(Most-Favoured-Nation, MFN)」條款的適用,該條款規定出版商與其他電子書銷售商如亞馬遜的訂價不得低於與蘋果的訂價。排除最惠國條款的適用意味著,未來出版商和零售商協議的電子書價格將能低於蘋果訂價。 英商Penguin日前與歐盟執委會達成協議,決定終止與蘋果公司關於電子書定價的契約,其承諾條件如下: 一、Penguin公司將終止和零售書商間的代理契約。 二、未來兩年內零售書商可自訂電子書價格與折扣,包含Penguin公司出版的書籍。 三、Penguin公司和零售書商的契約也將適用禁止價格最惠國條款,期限5年。 歐盟執委會接受Penguin公司所提出之承諾,並認為此舉將有助於恢復市場的有利競爭環境。本案終能落幕。
歐盟個資保護委員會對英國個資傳輸適足性認定之意見英國自2020年1月31日正式脫離歐盟後,即成為歐盟跨境傳輸的「第三國」。能否持續和歐盟國家進行個資傳輸,就須視歐盟對英國跨境資料保護方式和《一般資料保護規範》(General Data Protection Regulation,GDPR)有無認定雙方具有本質上相同的保護程度,又稱為「適足性」(adequacy)的認定。目前,歐盟給予英國跨境傳輸過渡期到2021年7月,在此之後若希望持續不受限制的交流,就須經歐盟執委會(European Commission, EC)通過適足性認定後才得以進行。 2021年2月19日,歐盟執委會提出草案,認為英國的個資保護標準與歐盟的「GDPR」、「執法機關資料保護指令」(Law Enforcement Directive,LED)有適足性之適用。又在4月14日,歐盟個資保護委員會(European Data Protection Board, EDPB)針對歐盟執委會於2月19日所做的認定草案提出兩項意見: 一、肯認英國現行國內資料保護的核心架構中有關個資保護、處理及控制者的要件及處理方式和GDPR的保護程度並駕其驅。另,肯定英國「2018年資料保護法」(Data Protection Act 2018)中有關GDPR及LED的適用及對「英國資訊委員辦公室」(Information Commissioner’s Office, ICO)所賦予的權利及義務。 但同時,EDPB也向歐盟執委會提出以下幾點注意事項: 英國政府若發展獨立的個資保護政策,將可能與歐盟的保護架構分歧,造成個資保護程度降低。 「2018年資料保護法」中的「移民豁免」政策,讓資料控制者在處理移民相關資料時有廣泛的例外,得免於遵循GDPR之義務。 從英國將歐盟成員的資料傳給「第三國」時,該「第三國」本身需要具有基本上等同於GDPR的資料保護程度,才得允許傳輸。 針對英國政府出於國家安全目的,將個人資料傳輸到英國境內,而有義務免除或特殊情狀時,歐盟執委會應進一步了解或審核。 二、 認為英國法律框架中的核心要件實質上與LED的基礎原則具有高度一致性。因此建議歐盟執委會引入四年的日落條款(four-year sunset clause)方式,並密切觀察英國資料保護的發展,在必要時得以要求修改或終止LED適足性的決定。 針對以上問題,歐盟執委會希望能在6月底前廣納各國意見並做出決定。屆時,若通過適足性認定,其效期將延續4年,之後再進行適足性評估。並可能在英國開始制定相關的適足性及資料保護架構時,歐盟執委會得將其納入定期審查的項目中,以確保歐盟的個資跨境傳輸進入英國後,仍受適當的保護。
IMDRF於2025年3月提出《醫療器材監管依賴計畫操作手冊》草案,促進國際監管的一致性與產品流通性一、緣起與目標 「依賴制度(reliance)」指一國有效利用他國的審查結果,而減少重複作業、提升效率,並促進病人更快取得安全、有效產品的政策。為此,國際醫療器材法規管理論壇(International Medical Device Regulators Forum, IMDRF)於2025年3月提出《醫療器材監管依賴計畫操作手冊》(Playbook for Medical Device Regulatory Reliance Programs)草案,協助各國建立與管理依賴制度。惟此制度並非「無條件接受他國決策」或「國際換證」,而須由各國自行決定如何利用依賴制度,並承擔最終監管責任。 二、應用範圍 該手冊適用於所有醫療器材(含體外診斷器材)或輔具,並涵蓋產品生命週期各階段(如技術文件審查或品質管理系統驗證等)。 三、依賴機制的類型 手冊歸納三類依賴機制並舉例說明: 1.工作共享(Work-sharing):指多國協作進行監管任務,可為聯合評估、聯合檢查,或共同推出監管標準等。如IMDRF推出的「醫療器材單一稽查計畫」,訂定多國之驗證機構對製造商的統一稽核標準,使廠商受稽後所作成的稽查報告可一次性符合數國法規。 2.簡化審查(Abridged Review):以他國完整的審查成果作為基礎,僅針對當地「特有」及「新增」的風險進行審查。如新加坡健康科學局已實施簡審制度。 3.承認(Recognition):正式接受他國監管決策結果作為判斷依據,可分為單、雙、多邊的承認。如CE標誌的醫材可在歐盟27個成員國內通行。 四、結語 IMDRF並非藉由該手冊推行「最佳模式」,而是協助各國依需求發展適合的監管依賴策略,加強協作與資源共享,進而促進全球監管上的一致性與產品流通性。近年世界衛生組織及區域組織(如歐盟、東協、非洲聯盟發展署)越加重視各國監管法規的一致性,並將審查資源移向人工智慧或高風險醫材的監管探索中,此監管趨勢值得我國持續關注。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現