美國國家製造創新網絡2016年度報告

  依2014年復甦美國製造與創新法(Revitalize American Manufacturing and Innovation (RAMI) Act of 2014),美國國家製造創新網絡計畫於2016年2月公布年度報告(Annual Report)。國家製造創新網絡計畫的目標是處理發生於執行面的、介於初期基礎研究與技術布建之間的製造技術轉型(manufacturing related technology transition)挑戰。

  國家製造創新網絡計畫的關鍵核心之一,是連結創新與製造,而「研發機構」(Institute)在這當中扮演最為關鍵的角色。此所稱之研發機構,係指2013年「國家製造創新網絡先期規劃」(NNMI-PD)以及2014年復甦美國製造與創新法(RAMI Act of 2014)第278s條(c)項所界定之「製造創新中心」(center for manufacturing innovation)——其採公私合營制(public-private partnership),其成員可包括各該業界之業者與學研機構,以及商務部長認屬適當之產業聯盟(industry-led consortia)、技職教育學校、聯邦政府所屬實驗室、以及非營利機構等。「研發機構」將以上之利害關係各方匯聚形成一個創新生態系(innovation ecosystem),以共同因應高風險之製造業挑戰並協助製造業者維持並提升產能與競爭力。

  我國於民國105年7月由行政院核定通過之「智慧機械產業推動方案」,亦規劃透過「智機產業化」與「產業智機化」,建構智慧機械產業生態體系,整合產學研能量,並深化智慧機械自主技術中長期布局與產品創新。

本文為「經濟部產業技術司科技專案成果」

※ 美國國家製造創新網絡2016年度報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7672&no=65&tp=1 (最後瀏覽日:2025/12/08)
引註此篇文章
你可能還會想看
世界經濟論壇發布《贏得數位信任:可信賴的技術決策》

  世界經濟論壇(World Economic Forum, WEF)於2022年11月15日發布《贏得數位信任:可信賴的技術決策》(Earning Digital Trust: Decision-Making for Trustworthy Technologies),期望透過建立數位信任框架(digital trust framework)以解決技術開發及使用之間對數位信任之挑戰。   由於人工智慧及物聯網之發展,無論個人資料使用安全性還是演算法預測,都可能削弱人民對科技發展之信賴。本報告提出數位信任路線圖(Digital trust roadmap),說明建立數位信任框架所需的步驟,以鼓勵組織超越合規性,指導領導者尋求符合個人與社會期望之全面措施行動,以實現數位信任。路線圖共分為四步驟:   1.承諾及領導(commit and lead):數位信任需要最高領導階層之承諾才能成功,故需將數位信任與組織戰略或核心價值結合,並從關鍵業務領域中(例如產品開發、行銷、風險管理及隱私與網路安全)即納入數位信任概念。   2.規劃及設計(plan and design):透過數位信任差距評估(digital trust gap assessment)以瞭解組織目前之狀態或差距,評估報告應包括目前狀態說明;期望達成目標建議;治理、風險管理與合規性(governance, risk management and compliance, GRC)調查結果;將帶來之益處及可減輕之風險;計畫時程表;團隊人員及可用工具;對組織之影響等。   3.建立及整合(build and integrate):實現數位信任需關注人員、流程及技術等三大面向。首先需確保人員能力、達成該能力所需之資源,以及人員溝通與管理;第二,定義組織數位信任流程,包括制定計劃所需時程、預算及優先實施領域,調整目前現有管理流程,並識別現有資料資產;最後,針對技術使用,可考慮使用AI監控、雲端管理系統以及區塊鏈等,以監測資料之使用正確性及近用權限管理。   4.監控及滾動調整(monitor and sustain):建立數位信任框架後,需持續建構相關績效及風險評估程序,以確保框架之穩定,並根據不斷變化的數位信任期望持續改善,以及定期向董事會報告。

日立全球儲存科技公司對大陸微型硬碟製造商提起專利侵權訴訟

  硬碟製造商日立全球儲存科技公司(Hitachi Global Storage Technologies)聲明該公司已於2004年12月28日於北加州地方法院對中國大陸硬碟製造商南方匯通微型硬碟科技股份有限公司(GS Magicstor of China)及其位於加州Milpitas之聯合研究機構GS Magic and Riospring of Milpitas, CA提起專利侵權訴訟,主張南方匯通侵害日立對於生產硬碟所擁有的多項專利權,並希望獲得財產上損害賠償並永久禁止GS Magic繼續於美國製造、利用、進口、販售該侵權產品,求償額度目前尚未公佈。   日立所生產的一吋硬碟已被裝配於Apple的iPod Mini MP3隨身聽,該公司更計畫於今年開發更小的微型硬碟。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

英國資訊委員辦公室(ICO)發布企業自行檢視是否符合歐盟一般資料保護規則之12步驟

  英國作為歐洲金融重鎮,不論各行業均有蒐集、處理、利用歐盟會員國公民個人資料之可能,歐盟一般資料保護規則(General Data Protection Regulation,簡稱GDPR)作為歐盟資料保護之重要規則,英國企業初步應如何自我檢視組織內是否符合歐盟資料保護標準,英國資訊委員辦公室(Information Commissioner's Office, ICO)即扮演重要推手與協助角色。   英國ICO於2017年4月發布企業自行檢視是否符合GDPR之12步驟(Preparing for the General Data Protection Regulation(GDPR)-12 steps to take now),可供了解GDPR的輪廓與思考未來應如何因應: 認知(Awareness):認知GDPR帶來的改變,與未來將發生的問題與風險。 盤點資料種類(Information you hold):盤點目前持有個人資料,了解資料來源與傳輸流向,保留處理資料的紀錄。 檢視外部隱私政策(Communicating privacy information):重新檢視當前公告外部隱私政策,並及時對GDPR的施行擬定因應計畫。 當事人權利(Individuals'rights):檢視資料處理流程,確保已涵蓋GDPR賦予當事人如:告知權、接近權、更正權、刪除權、製給複本權、停止處理權、不受自動決策影響等相關權利。 處理客戶取得資料請求(Subject access requests):GDPR規定不能因為客戶提出取得資料請求而向其收費;限期於1個月內回覆客戶的請求;可對明顯無理或過度的請求加以拒絕或收費;如拒絕客戶請求則限期於1個月內須向其說明理由與救濟途徑等。 處理個人資料須立於合法理由(Lawful basis for processing personal data):可利用文書記錄與更新隱私聲明說明處理個人資料之合法理由。 當事人同意(Consent):重新檢視初時如何查找、紀錄與管理取得個人資料的同意,思考流程是否需要做出任何改變,如無法符合GDPR規定之標準,則須重新取得當事人同意。 未成年人(Children)保護:思考是否需要制定年齡驗證措施;對於未成年人保護,考慮資料處理活動是否需取得其父母或監護人的同意。 資料外洩(Data breaches):有關資料外洩的偵測、報告與調查,確保已制定適當處理流程。 資料保護設計與影響評估(Data Protection by Design and Data Protection Impact Assessments):GDPR使資料保護設計與影響評估明文化。 資料保護專責人員(Data Protection Officers):須指定資料保護專責人員,並思考該專責人員於組織中的角色與定位。 跨境傳輸(International):如執行業務需跨越數個歐盟會員國境域,企業則須衡量資料監管機關為何。

TOP