簡介日本「u-Japan政策」

刊登期別
2006年01月
 

※ 簡介日本「u-Japan政策」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=768&no=0&tp=1 (最後瀏覽日:2025/12/12)
引註此篇文章
你可能還會想看
美國修法通過,未來必要時可強制旅客接受AIT掃描

  近來美國運輸安全管理局(Transportation Security Administration, TSA)修訂隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定機場安全檢查於必要時,可以針對某些特殊旅客強制進行AIT掃描。   美國運輸安全管理局根據航空運輸安全法(Aviation and Transportation Security Act, ATSA) 負責運輸之安全、評估威脅及強制執行安全相關的規定和要求,並且確保機場等交通設備是否有充足的安全措施。   由於國際恐怖攻擊行動頻傳,美國運輸安全管理局於2013年開始採行AIT掃描技術以強化旅客通關之安全檢查,並將會顯示出近乎裸照的3D透視影像全身掃描機器(body scanning machines)淘汰。   所謂的AIT(Advanced Imaging Technology)掃描技術,即係高階圖像技術,可偵測旅客是否有攜帶危險性、威脅性物品,它所顯示出來的影像僅係一個大致輪廓,如有違禁品則會在該部位產生色塊,警告安檢人員應採行進一步檢查措施。   一般而言,雖然旅客可拒絕AIT掃描,選擇讓海關人員進行身體檢查,但是為確保運輸安全,近來運輸安全管理局更新隱私衝擊評估(Privacy Impact Assessment, PIA) 規章,規定於必要時可以針對某些特殊旅客強制進行AIT掃描,旅客不再有拒絕之權利。   此一政策施行,勢必遭受侵害「隱私權」之質疑,運輸安全局表示,AIT掃描係採用「自動目標辨識」 (Automatic Target Recognition , ATR) 軟體,亦即非直接顯示個人影像,僅顯示特殊物體在一般影像上的所在位置,發出警訊後再由安檢人員進行詳細檢查。現今AIT掃描技術已提升,掃描出的人體圖像會被模糊處理,且掃描後機器不會儲存任何可識別個人之資訊,更加確保旅客的隱私權不受侵害。

美國第二大連鎖商信用卡資料外洩

  美國第二大連鎖商塔吉特(Target)在12月19日正式發出郵件通知客戶,表示公司資訊系統因遭駭客入侵,從2013年11月27日至12月15日期間內的刷卡記錄可能遭竊,約莫共4千萬筆,遭竊內容包含姓名、卡號、卡片到期日和卡片驗證碼。目前美國的塔吉特連鎖店推出全面9折的優惠來挽回消費者的信心,並對資料外洩的個別民眾提供免費的信用監督作為補償。   每當資安事件發生時,所有防毒軟體公司及資安管理服務都會跳出來大肆評論,並宣稱這是因為沒有購買自家資安服務或產品的關係,但在塔吉特事件,此番事後諸葛的批判方式顯然不再行得通。   塔吉特的資訊系統先前接受過檢驗,完全符合「支付卡產業資料安全標準(PCI DSS)」,有專家評析不太可能是在銷售點管理(POS)設備上(指擁有收銀、進銷存作業功能的機器)植入惡意軟體,比較可能是從授權與結算的交換系統竊取資料。   塔吉特的信用卡資料外洩事件,引發了一連串的訴訟案件及犯罪調查,目前加州提起了兩件團體訴訟、奧勒岡州一件,損害賠償額估計高於5百萬美元;另外,目前至少有四州的州檢察長(Attorney General)展開了聯合調查,直接要求塔吉特配合提出信用卡資料遭竊事件的相關資訊,民眾和調查機關最關注的在於塔吉特何時得知資料遭竊事件的發生、花了多久時間進行應變以及是否有盡到立即通知當事人的義務。同時間,從塔吉特流出去的數百萬筆信用卡和簽帳卡資料已經開始在黑市中販售每筆價格20至100美元不等。

FCC主席Julius Genachowski警告美國恐有頻譜危機

  美國聯邦通訊傳播委員會(Federal Communications Commission, FCC )主席Julius Genachowski表示,美國政府正努力規劃商業用途頻譜(spectrum)供給量,以滿足通訊科技服務發展需求。惟諸多產業專家預測無線通訊服務運用導致頻寬需求快速增加,無線通訊擁塞情況恐將嚴重惡化。   儘管FCC已藉頻譜拍賣釋出不少頻譜,且2009年6月全美廣電數位化後(DSO),一定要件開放業者毋須取得頻譜執照便可使用所謂的「閒置頻譜」(interleaved/white space),但是頻譜匱乏的問題仍無法解決。   對此,FCC允諾將會弭平頻譜供給需求間的落差,並且列為FCC的首要任務之一。未來FCC將透過非商用頻譜重分配與鼓勵發展更有效率使用頻譜之科技,以期解決頻譜不足的窘境。   產業界與公眾安全通訊相關組織呼籲FCC應提供更多頻譜供無線通訊服務使用。不過FCC亦要求資通訊產業於研發行動寬頻新產品時,須設想頻譜供給不足,研發更有效率使用頻率的通訊技術。產官學三者間,必須相互配合與協調(尤其是業者間的「不歧視原則」),方能有效解決網路通訊擁塞及頻譜匱乏問題。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP