國家高速公路運輸安全局(NHTSA)發佈即將針對車輛與車輛間通訊訂立規則的訊息,以管理車對車之間(V2V)通訊技術,V2V技術最主要著眼在於避免碰撞,根據調查百分之94的車禍事故都有人為因素牽涉其中,V2V技術可以讓車輛有效的認知碰撞的情況與潛在威脅。V2V技術仰賴的是鄰近車輛之間的通訊溝通並交換訊息,以警告駕駛潛在的導致碰撞安全威脅,例如:V2V可以警告駕駛前車正在煞停,所以候車必須隨之減速以免碰撞,或是警告駕駛在經過十字路口的時候處於不安全的情況,因為有一輛看不見的車輛正以高速朝路口靠近。V2V通訊技術使用精密的短距離通訊技術以交換車與車子之間的基本訊息,諸如:位置、速度、方向已決定是否要警告駕駛以避免碰撞。本項規則制訂的提案可謂是數十年來NHTSA與各部門間合作努力的成果,包含汽車產業界、各州運輸交通部門、學術機構以建立共識的標準。NHTSA的提案當中規制運用在所有輕型車輛V2V技術使用無線電傳輸協定與光譜頻寬總稱為精密短距通訊技術(DSRC)。這項立法規制要求所有的車輛都應該要透過標準化技術講共同的語言,並且要求所有車輛均要納入安全與隱私保護的措施。本次即將管制的車輛包括一般轎車、多功能車(MPV)、卡車、公車,車輛在4536公斤以下的車輛未來必須配備V2V的通訊系統。
●交換資訊部分
僅交換基本安全訊息,其中包含車輛的動態訊息諸如行進方向、速度、位置。這些基本的安全訊息每秒交換高達10次,裝有V2V裝置的車輛將保留這些訊息,去評判是否有碰撞的威脅。如果系統覺得有必要,將立即發出訊息警告駕駛採取必要措施避免立即碰撞。
●V2V未來可能應用
■十字路口動態輔助:車輛進入十字路口前,如果會發生碰撞會加以警示。
■左轉輔助:駕駛一旦左轉會撞上來車的時候,特別在於駕駛視線被擋住的情況下,會加以警示。
■警急電子煞車燈:同方向行進車輛,前車忽然減速的情況下,V2V技術可以允許使經過透視前車的情況下,知道駕駛目前正在減速,所以可以針對視線外的急煞車預先因應。
■前端碰撞警示:前端碰撞警示將警告駕駛即將到來的撞擊,避免撞擊前車。
■盲點警示與變換車道警示:車輛變換車道的時候系統將警告位於盲點區域的車輛即將靠近,避免在變換車道的時候發生碰撞。
■超車警示:警告駕駛超車並不安全,因為對向車道正有車輛往此方向前進。
●面對網路攻擊
■設計訊息認證方案,確保交換訊息時的安全性。
■每一項交換的訊息均會經過偵測避免惡意攻擊。
■惡意攻擊的回報機制:諸如身份錯誤配置的訊息、惡意車輛阻擋V2V訊息。
●隱私保護
在設計最初期即導入V2V僅允許分享蒐集通用的安全資訊,對於個人或其他車輛的資訊不能加以蒐集與傳輸。
目前NHTSA將針對本項提案蒐集公眾意見(預計將進行九十天),並審核公眾所提交意見是否可行,在發佈最終的規則。
澳洲法院近來持續在著作權相關案件中強調個人精神智慧投入的重要性,在Primary Health Care Limited v Commissioner of Taxation一案中([2010] FCA 419)再度強調了這樣的趨勢。在本案中,原告Primary Health Care為一信託受益人,透過信託取得醫療與牙醫業務,原告主張相關的醫療記錄文件如:處方籤、健康記錄、轉診信(referral letters)以及諮詢意見都有著作權,而於計算稅基時,應從信託的淨收益中加以扣除。 本案法官則指出,醫療記錄必須要達到語文著作的創作性實質要求,才能主張著作權的存在。針對本案的相關醫療記錄法官分別分析如下: 一、 諮詢記錄 所有的諮詢紀錄中,法官認定只有一份諮詢記錄受到著作權的保護,該份記錄從頭到尾只有一個作者,並以連續記述的方式呈現出個人精神智慧的投入;而本案中其他的諮詢記錄則有多個作者,僅僅標記姓名、醫療狀態、藥物治療以及生理、病理資料,難以呈現出個人精神智慧的表現,僅為病人的診斷與治療資訊,因此法官認定這些記錄無法受到著作權的保護。 二、 處方籤與健康記錄 作為本案證據的處方籤,只有姓名、藥物治療、劑量以及制式醫囑等資訊,而健康記錄則只有一連串的病史與醫療程序。因此,法官認定本案中所有的處方籤與健康記錄都不足以作為著作權的保護的客體。 三、 轉診信 法官認定在本案中的轉診信都有一些個人精神智慧的投入,儘管轉診信都是依循固定的格式,但基於轉診信的目的考量,固定的格式與內容都是合理的,因此本案中的轉診信都可以受到著作權的保護。 在Primary Health Care一案中,法官認定相關的醫療記錄文件並不必然一律受到著作權的保護,必須個別的加以認定。在醫療記錄中,只有當所有作者是能夠被辨識、特別是在只有單一作者的醫療紀錄中,能達到著作權法中語文著作對於個人精神智慧投入的要求時,才會受到著作權的保護。
中國大陸國家互聯網信息辦公室、國家市場監督管理總局聯合發布《個人信息出境認證辦法》中國大陸國家互聯網信息辦公室、國家市場監督管理總局於2025年10月17日聯合發布《個人信息出境認證辦法(下稱認證辦法)》,並將於2026年1月1日施行。中國大陸所稱之認證即為臺灣所稱之驗證,屬兩岸詞語使用之差異,容易產生混淆誤認先予敘明,下將以臺灣慣用之驗證一詞說明。 依照《中華人民共和國個人信息保護法》第38條須向境外提供個人資料方法有四種:分別為1.透過國家網信部門組織的安全評估、2.經專業機構進行個人資料保護驗證、3.依照國家網信部門制定的標準化契約與境外接受者訂定契約,以約定雙方之權利義務、4.法律、行政法規、國家網信部門所規定之其他條件。而認證辦法係依據第二種方法所訂,主要規範:1.處理者資格限制、2.傳輸資料數量、3.影響評估內容、4.驗證機構申請資料與報告義務、5.對驗證機構之監督。 處理者資格限制與傳輸資料數量方面,認證辦法規定向境外提供個人資料:1.不可為關鍵信息基礎設施營運者、2.向境外提供的個人資料須為10萬人以上未滿100萬人之個人資料或未滿1萬人之敏感個人資料(須注意,中國大陸之敏感個人資料包含:生物識別、宗教信仰、特定身分、醫療健康、金融帳戶、行蹤軌跡等資料,以及不滿14週歲未成年人的個人資料,故與臺灣個資法第6條之特種個資並不一致)。且認證辦法規定不得對個人資料的數量為拆分,意即如將資料數量拆成數筆10萬人以下,藉以規避認證辦法資料數量10萬人以上的境外傳輸申請限制並不合法。 除依法應履行的告知外,向境外傳輸前應取得當事人的單獨同意,並採取個資影響評估,影響評估之內容須包含:1.處理者與境外接收者處理個資的特定目的、範圍、方式、2.個資出境的風險、3.境外接收者的個資保護能力與義務、4. 提供事故通報管道、5.境外國家或地區的政策、法規影響。 最後,認證辦法應較注意的是驗證機構的報告義務與受檢義務的明確立法,使得除藉由驗證機構對個人資料處理者的審查確保個人資料國際傳輸的安全外,再透過政府機關對於驗證機構的檢查,以確保監管個人資料跨境傳輸,亦屬於我國政府機關可以參考之個人資料國際傳輸監管面向。
歐盟將開發一套適用於全歐盟的權利登記系統,促使數位館藏的授權可以在一個透明且價格合理的機制下進行德國總理Angela Merkel在日前舉辦的法蘭克福書展中強調,反對在google在未釐清相關權利與建置對應的配套機制下,擅自將圖書典藏掃描數位化的作法。而不只德國反對Google的數位圖書計畫,歐盟執委會也在10月19日通過提案,要求歐盟正視圖書館藏數位化的智慧財產權議題,提案委員也督促歐盟應儘快採取行動,配合歐盟著作權法體系,發展更具競爭力的歐盟館藏數位化方案。 然在館藏書籍數位化的過程中,有必要先解決孤兒著作(verwaiste Werke)因著作人不明而無法進行數位化及授權的困境。據估計,英國圖書館館藏就有40%屬於孤兒著作。為找出一套簡易的授權機制,並建立歐盟各國針對孤兒著作共通的認定標準,歐盟在eContent Plus計畫架構下,於2008年11月便開始所謂「ARROW行動方案(Accessible Registries of Rights Information and Orphan Works)」,希望透過各國圖書館、著作權集體管理團體、出版商間的參與,整合歐盟境內不同的權利登記機制,共同開發出一套適用於全歐盟的權利登記系統,清楚顯示歐盟境內各種著作的權利狀態,促使數位館藏的授權可以在一個透明且價格合理的機制下進行,同時確保著作人可以得到適當的報酬。 有關歐盟針對圖書數位化的政策與討論,以及google數位圖書協議後續協商的結果,仍有待持續追蹤觀察。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)