美國專利審查中之所謂「Track One程序」,是指美國在2011年所通過的〈美國發明法〉( Leahy-Smith American Invention Act, AIA)中建立的一套快速審查專利的審查程序。
〈美國發明法〉第11條(h)項中要求,申請人繳交優先審查費用(Prioritized Examination Fee)後,美國專利審查主管機關,美國專利商標局(United States Patent and Trademark Office, USPTO)應提供優先審查服務。因此在Track One程序中,專利申請人僅需要付出4800美元的優先審查費,就可以獲得美國專利商標局的優先審查服務。
在此之前,美國專利商標局也曾經推出過類似的快速審查程序,亦即「加速審查」(Accelerated Examination, AE)程序,但在該加速審查程序中,申請人必須要自行執行對既有技術的檢索,並且提供輔助文件來解釋其請求項在既有技術下之可專利性。而相比之下,申請人在Track One程序中,僅需要負擔4800美金就可以與加速審查程序中相同,在12月內完成審查,且不需要負擔自行檢索技術的義務。也因此在Track One程序推出之後,加速審查程序的申請案件數量也受到影響,日前美國專利商標局即曾經徵詢公眾意見,評估是否仍需保留加速審查之程序。
本文為「經濟部產業技術司科技專案成果」
英格蘭、蘇格蘭、威爾斯政府,以及北愛爾蘭農業、環境和鄉村事務部於2024年5月23日共同提出「溫室氣體移除納入碳交易框架」(Integrating Greenhouse Gas Removals in the UK Emissions Trading Scheme)聯合諮詢文件,擬將「溫室氣體移除」(Greenhouse Gas Removals, GGRs)技術納入現行英國碳排放交易體系。GGRs係指主動將大氣中的溫室氣體移除之方法,又稱「二氧化碳移除」(Carbon Dioxide Removal, CDR)、「負碳技術」(Negative Emission Technologies, NETs),此類技術被認為能協助「難減排產業」減少排放。 此次意見徵集主要針對以下四大面向: 1.基本原則:將GGRs整合進UK ETS,須以維持減碳誘因、確保市場誠信、創造長期有效率的碳權交易市場、環境友善、具備可操作性、最小干預性、未來靈活性保障、考量財務影響等原則為基本前提。 2.總量管制:UK ETS於納入GGRs後,預計仍將維持當前總量上限,以避免實質上增加企業的排放容許量。 3.配額發給:GGRs能獲得的配額,擬採取「事後發給」的方式,於移除完成並經過驗證後,才發給配額,以維持交易市場的可信性。 4.市場整合:英國目前暫不考慮建立獨立的溫室氣體移除交易市場,擬將GGRs完全整合進既有的UK ETS中,並透過總量及需求控制或免費配額等措施調節市場供需,穩定並促進市場發展。 英國政府相信,透過將GGRs納入現行UK ETS中,可以增加企業對於碳移除之需求,提高負碳技術的投資誘因,進而持續對於淨零排放的目標有所貢獻。
德國經濟暨能源部召開2016年「中小企業創新核心計畫」年度會議德國經濟暨能源部於2016年10月27日召開2016年「中小企業創新核心計畫」年度會議,約有200位專業經理人、企業與學者共同參與討論創新產品未來在市場的趨勢、創新生產流程與技術服務,專家在會中提供許多寶貴意見。聯邦政府中小企業處代表Gleick開幕致詞時表示,中小企業的創新力量決定我們在未來的經濟成就,所以政府需要持續投資在研究與創新以及適當的補助。 經濟暨能源部以「中小企業創新核心計畫」補助中小企業、研究機構共同開發以市場為導向的研究與創新技術,透過共同合作使參與的企業更具有產業競爭優勢,此計畫於2016年提供543百萬歐元補助,日前亦通過2017年548百萬歐元補助預算。 中小企業創新核心計畫(Zentrales Innovationsprogramm Mittelstand ,以下簡稱ZIM)是一項覆蓋全國範圍、不限制技術領域和行業的補助計畫,補助對象除中小企業外,還包括與之合作的研究機構。ZIM計畫中補助的中小企業為員工人數不超過499人,同時年營業額低於5000萬歐元或資產負債表總額低於4300萬歐元的企業。該計畫整合過往其他許多補助計畫,德國聯邦經濟與能源部於2015年4月公佈了最新的ZIM計畫實施方針,擴大受補助中小企業的範圍,且提高資助資金的數額,將對企業補助的最高數額從35萬提高到38萬,對研究機構補助的最高數額從17.5萬提高到19萬歐元,以持續提升德國中小企業的創新能力與競爭力;企業與合作研究機構可以在補助的架構下針對先進技術研發獲得資金,研發主題不限,重點在於創新內容與市場價值。
日本修正《氫能基本戰略》以實現氫能社會日本於2023年6月6日召開有關「再生能源、氫能等相關」內閣會議,時隔6年修正《氫能基本戰略》(水素基本戦略),其主要以「水電解裝置」、「燃料電池」等9種技術作為戰略領域,預計15年間透過官民投資15兆日元支援氫能相關企業,希冀盡速實現氫能社會。 日本早於2017年即提出氫能基本戰略,由於氫氣在使用過程中不會產生溫室氣體或其他污染物質,被認為是可以取代傳統化石燃料的潔淨能源,欲以官民共同合作,無論在日常生活、生產製造等活動下,都能透過氫能發電方式,達成氫能社會,故推出降低氫能成本、導入氫能用量的政策,並以2030年為目標,將氫能的用量設定為30萬噸、同時將氫能成本降為30日元/Nm3(以往價格為100日元/Nm3),使其成本與汽油和液化天然氣成本相當。為配合2021年《綠色成長戰略》,日本再次擴充目標,透過活用綠色創新基金,集中支援日本企業之水電解裝置和其他科技裝置,預計在2030年的氫能最大供給量達每年300萬噸、2050年可達2000萬噸。 然而隨著各國紛紛提出脫碳政策和投資計畫,再加上俄烏戰爭之影響,全球能源供需結構發生巨大變化,例如:德國成立氫氣專案(H2 Global Foundation)投入9億歐元,以市場拍賣及政府補貼成本的方式推動氫能、美國則以《降低通膨法》(The Inflation Reduction Act),針對氫能給予稅率上優惠措施等,在氫能領域進行大量投資,故為因應國際競爭,日本重新再審視國內氫能發展,並修正《氫能基本戰略》,除提出「氫能產業戰略」及「氫能安全保障戰略」外,本次主要修正之重要措施摘要如下: 1.維持2030年、2050年氫能最大供給量之設定,但新增2040年時提出氫能的最大供給量目標為1200萬噸。 2.由於水電解裝置在製造綠氫時不可缺,爰設定相關企業於2030年前導入15GW左右的水電解裝置,同時確立日本將以氫能製造為基礎之政策。 3.鑒於氫能科技尚不純熟、氫能價格前景不確定性高,在氫能供應鏈的建構上有較大風險,故透過保險制度分擔風險,以提高經營者、金融機構投資氫能之意願。 4.藉由氫能結合渦輪、運輸(汽車、船舶)、煉鐵化學等其他領域,期以氫氣發電渦輪、FC卡車(使用氫氣燃料電池Fuel Cell之卡車)、氫還原製鐵為中心,强化國際競爭力,創造氫能需求。 5.預計10年間,以產業規模需要在都市圈建設3處「大規模」氫能供給基礎設施;另依產業特性預計於具相當需求之地區,建設5處「中等規模」基礎設施。
智慧型運輸系統之頻譜規劃-參考美國及歐盟之規範