所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。
該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。
其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。
本文為「經濟部產業技術司科技專案成果」
美國總統於2019年1月14日簽署《實證決策基本法》(Foundations for Evidence-Based Policymaking Act of 2018),本法包含要求聯邦政府政策制定應以實證為依據,並規定開放政府資料法(OPEN Government data Act)相關措施,與確保機密資料安全及資料統計效率,據此做為推動政府資料開放共享與以實證為依據制定聯邦政府政策之法制基礎。 做為美國聯邦政府透明化政策的一環,本法最核心的部分即為開放政府資料法之相關規定,開放政府資料法的OPEN為開放(Open)、公開(Public)、電子化(Electronic)與必要(Necessary)之縮寫,象徵開放政府資料法的精神與意旨,其具體措施包含要求聯邦政府機關應盡可能公開其所蒐集之資料,依本法對資料的定義為被記錄的資訊,不論載體為何(recorded information, regardless of form or the media on which the data is recorded)。 而公開的資料應具備機器可讀性(machine-readable)、為或可轉換為自由檔案格式(open format)、不受除了智慧財產權保護以外之使用限制(即非國家機密或受其他法律保護的資料)以及應符合由標準制定組織所訂定之開放標準,除此之外每個機關應設置首席資料長(Chief Data Officer)負責上述資料開放事宜,以確保政府公開資料得以有效率的開放與共享。
智慧聯網趨勢下的城鎮再進化-日本 ICT 社區總體營造 日本產業競爭力強化法內之灰色地帶消除制度日本經濟產業省(以下簡稱經產省)為了落實安倍內閣提出之日本再興戰略,希望透過相關法制規範之調整,促進產業新陳代謝機制,並喚起民間的投資,進一步解決日本國內企業「過多限制、過小投資、過當競爭」現象,前於2013年10月15日將「產業競爭力強化法」提交國會審議。經日本國會審議後,該法已於同年12月6日公布,計有8章、共156條之條文,另有附則45條,並取代原先於2011年修正之產業活力再生特別措施法的功能。因產業競爭力強化法之內容屬政策性規範,搭配之施行細則、施行令等也陸續於2014年1月20日公布。 自產業競爭力強化法施行後,對於日本企業預計開發新產品和新技術等放寬限制,讓企業有機會進入與原業務不同之領域,並進行業務整編。舉例而言,依該法第9條第1項之規定:「欲實施新事業活動者依據主務省令規定,可向主務大臣提出要求,確認規定其欲實施之新事業活動及與其相關之事業活動的規範限制之法律和其所根據法律之命令規定的解釋,以及該當規定是否適用於該當新事業活動及與其相關之事業活動」之規定,就相關事業活動是否符合法令與否,向經產省申請解釋。 此一制度被稱為「灰色地帶消除制度」,目的在於使日本企業規劃新事業之前,可先洽主管機關瞭解該新事業活動涉及之業務是否合法,在經產省網站上已有SOP與申請表格可供參考。而此制度功能在於透過日本主管機關的闡釋、說明或認定相關計畫,讓有意從事創新活動的業者有如吞下定心丸,得以積極規劃、推動後續作業。
美國國家標準與技術研究院「隱私框架1.0版」美國國家標準與技術研究院(NIST)於2020年1月16日發布「隱私框架1.0版」(NIST Privacy Framework Version 1.0),為促進資料的有效利用並兼顧對隱私權的保障,以風險管理(risk management)的概念為基礎建構企業組織隱私權管理框架。本隱私框架依循NIST於2018年所提出的「健全關鍵基礎設施資安框架1.1版」(Framework for Improving Critical Infrastructure Cybersecurity Version 1.1)架構,包含框架核心(Core)、狀態評估(Profile)與實施層級(Implementation Tier),以利組織能夠同時導入隱私與資安兩種框架。由隱私框架核心所建構的風險管理機制,透過狀態評估來判斷當前與設定目標的實施層級,進而完成組織在隱私保護上的具體流程與資源配置。 NIST基於透明、共識、兼顧公私利害關係人的程序訂定本隱私框架,用以促進開發者導入隱私設計思維(privacy by design),以及協助組織保護個人隱私,其目標包含透過支持產品或服務設計中的倫理決策(ethical decision-making)及最小化對隱私的侵害來建立客戶的信任;在當前與未來的產品或服務中,因應持續變化的技術與政策環境遵守對隱私的保護義務;以及促進個人、企業夥伴、稽核者(assessor)與監管者(regulator)在隱私權保護實踐上的溝通與合作。 本隱私框架並非法律或法規,亦不具備法律效果,而是做為數位時代下NIST協助企業導入隱私權管理制度的參考工具,企業或組織將能基於本隱私框架靈活應對多樣化的隱私需求,掌握其產品或服務所隱含的隱私權侵害風險,並識別隱私權相關法律規範,包含加州消費者隱私法(California Consumer Privacy Act)與歐盟一般資料保護規則(General Data Protection Regulation, GDPR)等,提出更具創新性與有效性的解決方案,並有效因應AI與物聯網技術的發展趨勢。