何謂「阿西洛馬人工智慧原則」?

  所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。

  該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。

  其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。

本文為「經濟部產業技術司科技專案成果」

※ 何謂「阿西洛馬人工智慧原則」?, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7716&no=67&tp=5 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
加州法院判決刪除公司電腦之個人資訊非屬犯罪行為

  美國加州北區聯邦地方法院,於去年(2017年)12月5日做出關於雇員刪除其由公司提供電腦中與公務無關資料是否屬電腦犯罪之判決(United States v. Zeng, 4:16-cr-00172(District Court, N.D. California. 2017).)。   該案情為曾(Zeng)氏為避免其竊取自家公司商業機密行為被揭發,而逕自刪除其在公司提供筆記型電腦內之相關資料。而嗣後仍然被公司發現並報案,於此偵查單位FBI則以曾氏違反電腦詐欺及濫用法案(Computer Fraud and Abuse Act,下稱CFAA)中「未經授權而毀損他人電腦(18 U.S.C. § 1030(1984).).」以美國政府名義(下稱控方)起訴曾氏刪除其犯罪證據之行為。   對於該控訴,被告曾氏以被刪除之電子紀錄與其業務無關,非為公司所有財產為由作為抗辯。此外曾氏同時以其他判決主張毀損電腦之定義應係指由外部傳輸行為所致(如駭客行為),電腦使用者自己刪除行為應不包含之,以及控方未舉證其刪除行為將導致公司有不可回復或無法替代之損害作為抗辯。於此,控方則以刪除行為不應以內容而有所區分作為回應。   在審理期間,承審法官多納托(Donato)氏除參酌控辯雙方證詞外,並特別詢問控方律師指控內容是否會對一般大眾造成其在公用電腦中刪除同類資訊上之顧慮。而控方則以曾氏行為屬特殊情況作為答辯。最後,多納托氏則以控方主張將造成社會恐慌以及控方未提出被告刪除資料行為究竟對公司有何實際損害,判決被告無罪。

加拿大運輸部發布自駕系統測試指引2.0,為建立全國一致的實驗準則

  加拿大運輸部(Transport Canada)於2021年8月6日發布「自駕系統測試指引2.0」(Guidelines for Testing Automated Driving Systems in Canada Version 2.0),建立全國一致的最佳實踐準則,以指導配有自動駕駛系統(Automated driving systems, ADS)之車輛能安全地進行實驗。根據從國內外測試活動中取得的經驗及教訓,對安全措施進行更新,內容包括: 一、實驗前的安全考量:探討在開始實驗之前應考量的安全注意事項,包括(1)評估實驗車輛安全性、(2)選擇適當的實驗路線、(3)制定安全管理計畫、(4)安全駕駛員與培訓、(5)民眾溝通及提高意識、(6)確保當地執法單位及緊急應變人員瞭解實驗活動。 二、實驗中的安全管理:討論在實驗過程中應重新檢視的安全考量,包括(1)使用分級方法進行測試、(2)調整安全管理策略、(3)制定事件和緊急應變計畫與步驟、(4)安全駕駛員的角色及職責、(5)遠端駕駛員和其他遠端支援活動的安全考量、(6)在沒有安全駕駛員的情況下進行實驗、(7)與其他道路使用者的安全互動、(8)與乘客的實驗、(9)定期報告及資訊共享。 三、實驗後應注意之事項:在結束其測試活動後應考量的因素,包括報告實驗結果、測試車輛及其部件的出口或處置。如果測試車輛是臨時進口的,則在測試完成後可能需要將其銷毀或捐贈。   該測試指引僅適用於臨時實驗,而非永久的市場部署,加拿大運輸部將繼續更新該測試指引及其他文件和工具,以支持加拿大道路使用者的安全。

德國與愛爾蘭對於個人資料處理是否須明示同意之見解不同

  德國與愛爾蘭資料保護局對於資料保護指令所規定個人資料(以下簡稱個資)的處理(process),是否須取得資料當事人明示同意,表示不同的見解。德國資料保護局認為臉書網站所提供之人臉辨識(預設加入)選擇退出(opt out consent)的設定,並不符合資料保護指令(Data Protection Directive)對於同意(consent)的規範,且有違資訊自主權(self-determination);然而,愛爾蘭資料保護局則認為選擇退出的機制並未牴觸資料保護指令。   德國資料保護局委員Johannes Caspar教授表示,預設同意蒐集、使用與揭露,再讓資料當事人可選擇取消預設的作法,其實已經違反資訊自主權(self-determination)。並主張當以當事人同意作為個人資料處理之法律依據時,必須取得資料當事人對其個資處理(processing)之明示同意(explicit consent)。對於部長理事會(Council of Ministers)認同倘資料當事人未表達歧見(unambiguous),則企業或組織即可處理其個人資料的見解,Caspar教授亦無法予以苟同。他認為部長理事會的建議,不但與目前正在修訂的歐盟資料保護規則草案不符,更是有違現行個資保護指令的規定。   有學者認為「同意」一詞雖然不是非常抽象的法律概念,但也不是絕對客觀的概念,尤其是將「同意」單獨分開來看的時候,結果可能不太一樣;對於「同意」的理解,可能受到其他因素,特別文化和社會整體,的影響,上述德國和愛爾蘭資料保護局之意見分歧即為最好案例。   對於同意(consent)的落實是否總是須由資料當事人之明示同意,為近來資料保護規則草案(The Proposed EU General Data Protection Regulation)增修時受熱烈討論的核心議題。資料保護規則草案即將成為歐盟會員國一致適用的規則,應減少分歧,然而對於企業來說,仍需要正視即將實施的規則有解釋不一致的情況,這也是目前討論資料保護規則草案時所面臨的難題之一。

簡介人工智慧的智慧財產權保護趨勢

近期人工智慧(Artificial Intelligence, AI)的智慧財產權保護受到各界廣泛注意,而OpenAI於2023年3月所提出有關最新GPT- 4語言模型的技術報告更將此議題推向前所未有之高峰。過去OpenAI願意公布細節,係由於其標榜的是開源精神,但近期的報告卻決定不公布細節(如訓練計算集、訓練方法等),因為其認為開源將使GPT- 4語言模型面臨數據洩露的安全隱患,且尚有保持一定競爭優勢之必要。 若AI產業選擇不採取開源,通常會透過以下三種方式來保護AI創新,包括申請專利、以營業秘密保護,或同時結合兩者。相對於專利,以營業秘密保護AI創新可以使企業保有其技術優勢,因不用公開技術內容,較符合AI產業對於保護AI創新的期待。然而,企業以營業秘密保護AI創新有其限制,包含: 1.競爭者可能輕易透過還原工程了解該產品的營業秘密內容,並搶先申請專利,反過來起訴企業侵害其專利,而面臨訴訟風險; 2.面對競爭者提起的專利侵權訴訟,企業將因為沒有專利而無法提起反訴,或透過交互授權(cross-licensing)來避免訴訟; 3.縱使企業得主張「先使用權(prior user right)」,但其僅適用在競爭者於專利申請前已存在的技術,且未來若改進受先使用權保護之技術,將不再受到先使用權之保護,而有侵犯競爭者專利之虞,因此不利於企業提升其競爭力。 綜上所述,儘管AI產業面有從開源轉向保密的傾向,但若要完全仰賴營業秘密來保護AI創新仍有其侷限,專利依舊是當前各企業對AI領域的保護策略中的關鍵。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP