所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。
該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。
其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。
本文為「經濟部產業技術司科技專案成果」
歐盟為了要加速新穎性食品之上市、促進食品科技之發展,並加強複製動物乳肉品、奈米食品或外來等新穎性食品之上市查驗,今(2008)年初歐盟執委會(Commission)即針對1997年新穎性食品規則(Regulation (EC) No 258/97 concerning novel foods and novel food ingredients)提出修正建議案,而現行規則最大爭議,則在於其未能涵蓋1997年以後才研發出的食品以及在歐盟未大量食用但在國外已廣泛食用等兩類食品。 新規則草案的修正重點,將放在:(1)排除已受其他專門法規管轄之食品,包含生技產品(即基因改造食品、GMO)、食品添加物、調味料、酵素、維他命與礦物質(類似我國健康食品、保健食品)等。(2)建立單一、簡化的中央查驗制度(centralised authorisation system),由歐盟食品安全署(EFSA)進行安全評估後由執委會發布許可。(3)明定適用範圍包含運用非傳統育種技術所得之植物來源食品(food of plant or animal origin when to the plant and animal is applied a non-traditional breeding technique not used before 15 May 1997),亦即含複製動物食品,以及運用新生產製程所得之食品(food to which is applied a new production process, not used before 15 May 1997),即涵蓋運用奈米科技所製造奈米食品。此外,新規則亦提供研發新科學證據及資料並申請獲准的公司,享有5年的資料專屬保護(data protection,即data exclusivity),用以促食品及食品生產技術之研發。
從推動體系及法制架構思考我國文化創意產業發展之整合以南韓推動組織與法制架構為例 美國HHS發布2024-2030年聯邦健康IT計畫推動共享醫療體系美國衛生及公共服務部(United States Department of Health and human Services, HHS)於2024年9月底發布「聯邦健康IT策略計畫」(Federal Health IT Strategic Plan),強化電子健康資訊存取、交換和使用,提升健康管理能力、改善醫療照護體驗、推動健康研究及創新,並提出四大目標 四大目標包括: 1. 提倡健康福祉:賦予個人管理自身健康的權利,確保個人和公眾獲得現代且公平的醫療服務,並促進社區健康與安全。 2. 強化醫療照護的提供和體驗:提供安全、公平且優質的醫療服務,擴大病人獲取優質醫療途徑並減少健康差異。加強競爭和透明度改善醫療體系,減輕醫療提供者的監管和管理負擔,並增強使用健康IT工具的信心。 3. 加速研究創新:允許健康IT使用者適當存取健康資料以推動個人和公眾健康的改善。加強個人和公眾層面研究與分析,透過使用代表性不足群體的健康資料,促進健康公平。 4. 醫療資料連結醫療系統:持續推動健康IT工具的開發和應用、資料共享、普及健康IT基礎設施、保護個人隱私和安全、整合的公共衛生資料和基礎設施。 在健康IT策略計畫中也聚焦在健康公平性、人工智慧應用、資料共享及安全性等議題,並提出了六大實施原則:以人為本的包容性設計、安全且優質的健康資訊、資料導向的決策、提升全民健康公平性、鼓勵創新和競爭。透過聯邦政府健康IT策略目標與原則,預期在6年內提供更有效、公平和現在化的醫療系統。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。