所謂「阿西洛馬人工智慧原則」(Asilomar AI Principles),是指在2017年1月5日至8日,於美國加州阿西洛馬(Asilomar)市所舉行的「Beneficial AI」會議中,由與會的2000餘位業界人士,包括844名學者專家所共同簽署的人工智慧發展原則,以幫助人類運用人工智慧為人類服務時,能確保人類的利益。
該原則之內容共分為「研究議題」( Research Issues)、「倫理與價值觀」( Ethics and Values),及「更長期問題」( Longer-term Issues)等三大類。
其條文共有23條,內容包括人工智慧的研究目標是創造有益的智慧、保證研究經費有益地用於研究人工智慧、在人工智慧研究者和政策制定者間應有具建設性並健康的交流、人工智慧系統在其整個運轉周期內應為安全可靠、進階人工智慧系統的設計者及建造者在道德層面上是其使用、誤用以及動作的利害關係人,並應有責任及機會去影響其結果、人工智慧系統應被設計和操作為和人類尊嚴、權利、自由和文化多樣性的理想具一致性、由控制高度進階人工智慧系統所取得的權力應尊重及增進健康社會所需有的社會及公民秩序,而非顛覆之,以及超級智慧應僅能被發展於服務廣泛認同的倫理理想,以及全人類,而非單一國家或組織的利益等等。
本文為「經濟部產業技術司科技專案成果」
歐盟執委會(European Commission, EC)於2022年11月29日發布「無人機戰略2.0」(Drone Strategy 2.0),以全球最先進的歐盟無人機操作與設置技術安全框架為基石,為歐洲無人機市場設定發展願景,並闡述歐洲在大規模擴展商用無人機的同時,將如何提供產業新契機。 歐盟除以無人機交通監管系統計畫(U-SPACE)進行政策推動外,為擴張歐洲無人機市場,歐盟執委會提出「創新空中移動」(Innovative Air Mobility, IAM)與「創新空中服務」(Innovative Aerial Services, IAS)等2項新概念。前者包括國際、地區與城市空中移動(Urban Air Mobility, UAM)概念,期待以定期載客服務實現最終全自動化、有效整合並補充既有運輸系統與服務,以及提出有助於改善交通運輸系統碳排放的去碳(decarbonisation)替代方案。此外,透過廣泛布建並整合地面與空中基礎設施,將使UAM成為未來城市複合式智慧移動生態系統(multimodal intelligent mobility ecosystem)之一部;而後者則涉及無人機多元應用,諸如緊急服務、測繪、巡檢、偵查與物流運輸,抑或最終實現全自動化空中計程車(Air Taxis)等創新應用型態,期待相關應用於2030年成為歐洲日常生活的一部份。 為實現上述願景,歐盟提出「建立聯盟無人機服務市場」與「加強歐洲民用、安全與國防產業能力與綜效(synergies)」等兩項目標,其中涵蓋十大領域(例如:改善空域能力、促進航空作業、發展IAM、提供資金與融資、確立關鍵技術模組化(critical technology building blocks)),並從中啟動十九項攸關操作、技術與財務的關鍵行動(例如:建立支持在地利害關係人與產業落實永續的IAM線上平台、推動通用標準、採用反制無人機系統(C-UAS)、協調共同方法以提供無人機操作所需之無線電頻譜等),為未來無人機空域與市場,建立妥適的監管與商業環境,並加強無人機營運商、無人機製造商、國防部門、反制(counter)無人機,以及U-SPACE等有關無人機價值鏈(value chain)就不同環節上之效率。
美國眾議院通過爭議性的GMO產品標示草案美國聯邦眾議院在7月23日時通過極富爭議性的《2015安全與精準食物標示法》(Safe and Accurate Food Labeling Act of 2015)草案,目前該案已經交由美國聯邦參議院審理,並完成參議院二讀程序,交由參議院農業、營養與森林委員會(Committee on Agriculture, Nutrition, and Forestry)審理。本案主要目的在於替自願性基因改造與非基因改造標示建立一套統一的聯邦標準。引發爭議的是本案第203條b項的規定,該條款規定禁止各州建立強制性基因改造產品標示制度。 該案由堪薩斯州選出的共和黨籍聯邦眾議員Mike Pompeo提出。根據他及本案最主要的遊說團體美國雜貨製造商協會(Grocery Manufacturers Association)的說法,之所以要禁止各州建立強制性的GMO產品標示制度,目的有二:一是透過建立全國性的標準,避免各州標準不同的紊亂。一是他們認為「基改產品跟非基改產品一樣好」,如果強制標示可能會誤導消費者,使其認為基改產品可能是有問題或風險的。同時,他們也擔心強制標示可能將導致產品的價格上升。這樣的主張確實獲得了許多眾議院議員的支持。該案在眾議院通過時獲得了275張支持票,其中有45票是民主黨籍眾議員投下的。分析這些投下贊成票的民主黨籍眾議員,大部分是來自對食物價格較為敏感的選區,或是在競選期間就已經收到來自農業部門的巨額捐款。 至於反對者則認為,由於本案將使各州及聯邦食藥署無法建立強制性的標示規定,侵害人民對於基改產品知的權利,而將此案稱為「黑暗法」(DARK Act)。他們認為在科學界對基因改造產品安全仍無絕對的共識、人民又對基改作物存有疑慮的情況下推動這項法案完全不合理。而這樣的爭論隨著今年三月世界衛生組織所屬的研究機構──國際癌症研究機構宣布將廣泛用於GMO穀物的除草劑草甘膦(或稱嘉磷塞,Glyphosate)歸類為2A類致癌物 (對人類很可能有致癌性,probable human carcinogen)後,變得更為激烈。許多反對者因此對基因改造產品的安全性有更高的疑慮。 一般預料,美國聯邦參議院將開始處理本案,支持與反對本案雙方的競爭也越趨白熱化,目前也有幾個修正的提案正在醞釀。當前美國國內已有康乃狄克州及緬因州等少數州別通過了強制的基改食品標示法案,此外還有66個法律案正在27個不同的州審議中。本案如果通過將大幅改變美國在此領域的管制情形。而由於美國是全球重要的基改產品生產國,本案的最終結果預料也經影響未來國際上對基改產品標示的管制。
歐盟執委會通過關於《人工智慧責任指令》之立法提案歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。 《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。 歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。