澳洲證券投資委員會(Australian Securities and Investments Commission, ASIC) 於2016年12月15日發布第257號法規指導(Regulatory Guide 257,RG 257)-在未持有AFS或信用執照的狀態下測試fintech產品與服務(Testing fintech products and services without holding an AFS or credit licence)。RG 257並包含澳洲的監理沙盒架構。重要內容如下:
1.有別於其他國家的監理沙盒需要申請方能適用,透過法規以及ASIC澳洲已經提供一些鬆綁機制,換句話說並不需要事先申請就可以取得監管沙盒鬆綁。例如非現金支付產品,包含儲值卡,以及某些國外交易服務。
2.ASIC的fintech 執照豁免見諸於ASIC Corporations (Concept Validation Licensing Exemption) Instrument 2016/1175 以及ASIC Credit (Concept Validation Licensing Exemption) Instrument 2016/1176。
3.ASIC也可個別提供客製化的執照豁免以促進產品或服務測試,個別豁免就比較接近其他國家的監管沙盒架構。
因此基本上,只要符合法定以及上述兩個instruments的規定,就可以自動取得監管沙盒的鬆綁,而無需另外申請,唯需「通知」ASIC,並提供相關資料。監理沙盒的適用期間為十二個月。但是如果不符法定以及Instrument 2016/1175、Instrument 2016/1176的規定,也可以另外向ASIC申請客製化的豁免。
目前可適用Instrument 2016/1175的金融服務包含:
•掛牌的澳洲證券;
•簡易管理的投資架構;
•存款產品;
•某些一般的保險商品;以及
•「授權存款取用機構(authorised deposit-taking institutions,ADIs)」發行的支付產品。
唯須注意的是,Instrument 2016/1176允許有限的信用協助,但是不得提供借貸。另外,使用監理沙盒的fintech企業最多只能有100個零售客戶,以有效控制風險。
藥品監管機構負責人組織(Heads of Medicines Agencies, HMA)與歐洲藥品管理局(European Medicines Agency, EMA)聯合巨量資料指導小組(HMA-EMA joint Big Data Steering Group, BDSG)於2021年8月27日發布「巨量資料指導小組2021-2023年工作計畫」(Big Data Steering Group Workplan 2021-2023),將採以患者為焦點(patient-focused)之方法,將巨量資料整合至公衛、藥物開發與監管方法中,以提高巨量資料於監管中之效用。指導小組將利用「資料分析和真實世界訊問網路」(Data Analysis and Real World Interrogation Network, DARWIN EU)作為將真實世界資料整合至監管工作之關鍵手段; DARWIN EU諮詢委員會(Advisory Board)已於2021年建立,DARWIN EU協調中心(Coordination Centre)亦將於2022年初開始運作。 為確保資料品質與代表性,未來工作計畫將與「邁向歐洲健康資料空間–TEHDAS」(Towards A European Health Data Space – TEHDAS)合作,關注資料品質之技術與科學層面,並將於2022年提出第一版「歐洲監管網路資料品質框架」(data quality framework for the EU Regulatory Network)、「真實世界資料來源選擇標準」(criteria for the selection of RWD sources)、「詮釋資料優良規範指引」(metadata good practice guide)、「歐盟真實世界資料公用目錄」(public catalogue of European RWD)等規範。 此外,工作計畫將於2021年底舉辦「學習計劃」(learnings initiative)研討會,討論包括EMA人用藥品委員會(Committee for Medicinal Products for Human Use, CHMP)對於真實世界證據於藥品上市許可申請(Marketing Authorization Application, MAA)、適應症擴張(extensions of indications)之審查,以及過去真實世界資料分析試點於委員會之決策等議題,以利後續指引之修正。 最後,工作計畫預計於2021年底完成「健康照護資料二次使用之資料保護問與答文件」(question and answer document on data protection in the context of secondary use of healthcare data),以指導利益相關者與促進公共衛生研究,並發布由歐盟監管網路(EU Regulatory Network)同意之對於藥品監管(包括巨量資料)之資料標準化戰略。
Google被遺忘權近期歐洲法院判決趨勢德國聯邦最高法院(Bundesgerichtshof, BGH)於今(2020)年7月「VI ZR 405/18」」案中拒絕當事人請求Google刪除有關其健康個資之主張,為2018年歐盟通過一般資料保護規則(General Data Protection Regulation, GDPR)後,德國聯邦最高法院第一件與被遺忘權相關之判決。本案當事人曾為德國一慈善團體之負責人,該團體於2011年陷入財務危機,而當時有報導指稱當事人作為團體負責人,竟稱病不回應媒體訪談。當事人認為上述報導資料有損其名譽,請求Google刪除與其健康個資相關之搜尋結果。德國聯邦最高法院於判決中強調,網路搜尋結果是否須被移除,應衡量相關之基本權利,個案分別認定。本案中大眾知的權利(right to information)優於當事人被遺忘權,故駁回原告之請求,判決Google勝訴。 被遺忘權首見於2014年歐盟判決(Google Spain v. AEPD and Mario Costeja Conzalez),賦予人民要求搜尋引擎移除對自身造成負面影響資訊之權利。GDPR進一步於第17條明文化此一權利之內涵,於個資依原本蒐集之目的已不具必要性、當事人撤回同意、當事人反對個資自動化處理、當事人個資遭不法侵害、依照法律規定應刪除個資及青少年與兒童個資等六種情形,當事人得請求資料控制者刪除個資。 法國近期亦有被遺忘權相關法院判決。法國最高行政法院(Conseil d’État)於今(2020)年3月撤銷法國國家資訊自由委員會(Commission nationale de l’informatique et des libertés, CNIL)於2016年3月對Google作出十萬歐元之裁罰,因其僅刪除存在於法國網域內之當事人個資,而未及於全球網域。法國最高行政法院於本判決重申2019年歐盟法院(European Court of Justice)於Google v. CNIL之立場,認定Google履行被遺忘權之網域範圍僅適用於歐盟地區,而不及於全球,撤銷CNIL於2016年對Google作出之裁罰。
數位內容與色情問題引起討論南非國會近期推動數位匯流法案 (Convergence Bill) 之立法,其中,色情內容是否應於數位匯流立法之中加以定義與規範,引起不同的看法。有專家指出,色情內容超出了數位匯流法案所應規範之主題。亦有專家指出,如定義與規範不當,反而會引發出更多的問題。 在數位匯流與數位內容成為趨勢的今天,我們對於數位匯流與數位內容都從正面的角度來加以觀察,並予以期待。然而,數位匯流的只是傳播媒介,數位內容標示的也只是承載內容的載體。我們希望什麼樣的數位內容?負面的數位內容 ( 如色情內容 ) 在未來數位匯流與數位內容的發展趨勢中,應被放置在一個怎樣的位置,應是值得我們加以思考的。
日本經濟產業省利用巨量資料(BIG DATA)及人工智慧(AI)開發及測試新的經濟指標日本經濟產業省利用網絡積累巨量資料(BIG DATA)及人工智慧(AI)技術,應用民營企業相關資訊,開發和測試新經濟指標,分別於2017年7月19日及2018年1月8日公開該指標。為達到及早準確掌握經濟動向,對巨量資料等新資料之利用期待越來越高,政府部門也將利用巨量資料及人工智慧技術等方法,針對統計技術進行改革,。 新開發之指標有:1.SNS×AI商業信心指數(SNS×AI景況感指数):乃是透過人工智慧抽取關於商業信心的網路文章,並進行情緒(正/負)評估計算指數,期待有效地估計以每日為頻率之商業信心。2.SNS×AI礦工業生產預測指數(SNS×AI鉱工業生産予測指数):利用人工智慧選取有關工作和景氣之網路相關文件,結合「開放數據」之統計等技術,並利用人工智慧「機械學習」之手法,來預測「工業生產指數」。3.銷售點資訊管理系統(POS,point-of-sale)家電量販店銷售趨勢指標(POS家電量販店動向指標):透過收集具有銷售點資訊管理系統(POS)的家用電子大型專賣店的銷售資料,期待可以掌握每一日之「銷售趨勢」。 新的指數與既存統計指數,如景氣動向指數、中小企業信心指數、工業生產指數、商業動態統計等,其調查週期、公布頻率等,既存指數每月調查公布,新指數則進步至每日調查或每週公布等,在計算及呈現頻率上較既有更為精細。日本政府並設立「Big Data-STATS」網站,以實驗性質公佈上述經濟指標,並廣泛收納民眾意見以提高新指標的準確性。