流行音樂「取樣」之著作權概念

  流行音樂之抄襲,於我國著作權法之評價上,是以著作權法第91條第1項「擅自以重製之方法侵害他人之著作財產權者」來評價,我國智慧財產法院已有相關判決可供參酌,如智慧財產法院 103 年刑智上易字第 47 號刑事判決。惟流行音樂之創作,往往受到流行趨勢及過去其他作品的啟發,但將任何的風格上的模仿皆認為係著作權之侵害顯然並不恰當,而旋律相似度高達九成左右者屬於抄襲固然無庸置疑,然僅取樣(sampling)使用少數詞曲,用以表達概念或致敬之使用他人創作情形,其判斷標準,或可參考美國法院之判決見解。

  2003年的Newton v. Diamond案中,第九巡迴上訴法院認可「微量取用」(de minimis use)原則,認為在有數十秒的取樣情形時,當一般聽眾不認為是挪用,即構成微量取用,並無實質近似,且若未取樣原曲之重要部分,亦不構成抄襲。但2005年時,聯邦第六巡迴上訴法院在Bridgeport Music, Inc. v. Dimension Films案中,對微量取用的情形提出「明確性規則」(bright- line rule),認為必須要取得授權方得取樣;而美國最高法院則在1994年的Campbell v. Acuff-Rose案中,認為雖有擷取他曲旋律,但整體曲風不同時,採取轉化性原則,認為構成合理使用。

本文為「經濟部產業技術司科技專案成果」

※ 流行音樂「取樣」之著作權概念, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7744&no=67&tp=1 (最後瀏覽日:2025/04/03)
引註此篇文章
你可能還會想看
科技化創新金融服務規範研析—以行動支付和第三方支付為例

日本著作權法修正促進人工智慧開發

  2018年5月18日,於第196次參議院會議中通過「著作權法」修正案,並於5月25日公布,預計於2019年1月1日施行。本次修正是為因應數位網路技術的發展,對需要著作權人同意的行為範圍進行檢視。其中第47條之7修正、及新增之第30條之4與第47條之5與人工智慧發展有重大相關。   日本著作權法於2009年的修正中,增加第47條之7規定,原本可能構成著作權侵害之資料分析、機器學習行為(未經原作者同意複製、改作),只要在必要限度內,不分是否有營利,皆無須權利人同意。然而本條在使用上因為未涵蓋成果物的讓與行為,也就是如果公開販售學習完成的資料集或是人工智慧模型,甚至於同一平台共享資料集都可以構成侵害。有鑑於此,才在本次修法中修正相關條文。   本次修正中,增加第30條之4規範於必要限度內可利用他人著作物的行為,其中在同條第二款中認可第47條之5第1項第2款之行為,也就是「利用電子計算機的情報解析及提供其結果」,亦可被認為不違反著作權法,因而補上原本第47條之7的漏洞。   惟須注意的是,所謂的必要限度還是有嚴格的比例限制,不能無限制使用。由於目前本次修正還尚未生效,未來對人工智慧發展的應用會產生什麼樣的實際影響,值得繼續觀察。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

開放原始碼撤出蘋果Safari?

  兩年前蘋果選擇開放原始碼成像引擎( rendering engine ) KHTML 做為 Safari 瀏覽器的基礎;兩年後,蘋果則打算以自己的程式碼取代該引擎,藉以解決相容性的問題。 KHTML 成像引擎──也是其瀏覽器的核心,考慮在其架構上放棄 KHTML 的程式庫( code base ),或者所謂的「樹狀圖」( tree ),改用蘋果自己的版本,也就是所謂的 WebCore (網頁核心)。 KHTML 原本是為了要在 KDE ( K Desktop Environment )上執行而撰寫的──這是 Linux 和 Unix 作業系統的介面。   Safari 並不是蘋果唯一以開放原始碼為基礎的軟體,其麥金塔( Macintosh )作業系統就是以達爾文( Darwin )開放原始碼計畫為基礎。   企業在某些方面受到限制,而開放原始碼社群以不受限制為傲。蘋果自己內部有些問題搞不定,以致銜接不上 KDE 開發 KHTML 的模式,導致 KHTML 與 Safari 逐漸產生分歧,後來情況則越來越嚴重。

TOP