英國通過調查權力法案(Investigatory Powers Act 2016)

  英國於2016年11月底通過「調查權力法案」(Investigatory Powers Act 2016),該法案的部分內容已於同年12月30日生效,主要係將目前執法機關和情資單位之通信及相關資料蒐集的權力整併,並訂定了通信監察書(Interception Warrants)授權及監督之方式,以及要求業者保留網路連結記錄以供執法機構識別網路使用者。法案共分為九個章節,分別為:

1.一般隱私保護

2.合法監聽通信

3.取得通信資料之授權

4.通信資料之保留

5.設備干擾

6.大量授權

7.大量個人資料之授權

8.監督措施

9.其他及一般規定

  調查權力法案通過後,使英國政府得以合法的監控人民許多行為,包括蒐集、查看民眾的網絡瀏覽記錄、通訊資料、通聯紀錄及相關個人資料等,而監控範圍不再限於個體,並擴大至全體民眾。此外,必要時警方及安全部門亦得破解或遠端遙控人民之電腦或手機。法案並要求通信服務提供商(Communication Service Providers, CSPs)將民眾之網路使用紀錄相關資料保存至少12個月,而近50個不同之機關都能夠查看該些資料,如警察局、國防部、司法局、金融行為監管局,甚至與國家安全較無關連的食品標準局及勞動和退休金部等部門,均有查看之權限。

  法案目前生效的部分包括政府蒐集和保留民眾資料之權力,以及得強迫握有民眾資料的科技公司或相關單位,將所掌握關於民眾的資料交給情報機構。

  英國政府認為,在面臨現今高度安全威脅之情況下,網路已成為恐怖份子用來犯罪的新工具,故有必要讓執法與情資單位擁有維護人民安全的權力,確保政府具備對抗該挑戰的能力,使情資單位得以阻止新型態之犯罪並追訴參與犯罪之相關人員。

  然而,該法案已遭數萬人民連署反對,要求廢除該法案,因人民於網路上進行的各樣活動,均將遭受國家的監視,而負責機關也將面臨負荷龐大的資訊處理量,且一般人民之個人資訊亦將暴露在巨大的風險下。

  目前法案部分內容尚未生效,如網路連線紀錄(Internet Connection Records)的蒐集,因相關安全機制尚未建立完成。但可想而知,該法案所造成的爭議,已成為英國民眾所關注之焦點,而未來全面生效後,英國政府該如何面對這些反對的衝擊,則可繼續觀察。

相關連結
※ 英國通過調查權力法案(Investigatory Powers Act 2016), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7764&no=0&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
美國商務部、財政部以及司法部發布遵循美國出口管制與制裁規範聯合指引

美國商務部(Department of Commerce)、財政部(Department of Treasury)以及司法部(Department of Justice)於2024年3月6日發布出口管制與制裁法令遵循指引,以避免邪惡政權(malign regimes)與其他不法人士試圖濫用商業與金融管道,取得有危害美國國家安全與外交政策利益、全球和平與繁榮風險的貨品、技術以及服務,特別提供「非美國公司」(non-U.S. companies),降低相關風險的遵循指引。 該指引分享3則違反制裁法規的案例,重點如下: (1)某家總部位於澳洲的國際貨運代理和物流公司,運送貨品至北韓、伊朗以及敘利亞(皆為被制裁之目的地),且透過美國金融系統發起或收受交易款項,導致美國金融機構與被制裁之對象交易,並向受制裁的司法管轄區輸出金融服務。該公司最終繳納6,131,855美元罰款。 (2)某阿聯酋公司與杜拜以及伊朗公司共謀,透過在出口文件中將一家杜拜公司錯誤地列為最終使用人,然後從一家美國公司出口「儲槽清洗裝置」(storage tank cleaning units)到伊朗,構成違反出口管制規定行為。後與主管機關達成行政和解,繳納415,695美元罰款。 (3)某家總部位於瑞典的國際金融機構的子公司,因其客戶從被制裁的司法管轄區的IP位址,使用子公司的網路銀行平台,透過美國代理銀行向位於被制裁司法管轄區的交易對象付款,因此繳納3,430,900美元罰款。

標準必要專利與反托拉斯之成果運用法制-以高通案為例

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

美國環保署於提出首部「限制發電廠有毒氣體排放」國家管制標準草案並預定於2011年11月完成立法

  美國環保署(Environmental Protection Agency of the United States,以下簡稱EPA)於2011年3月16日首度對於國內發電廠有毒氣體的排放提出國家管制標準草案,並預定於2011年11月完成立法,此項立法措施被譽為近20年來美國空氣污染防治史上的重要里程碑。   美國對於發電廠所排放的有害氣體管制,最早源於美國清淨空氣法案(The Clean Air Act)在1990年要求EPA加強對於發電廠排放之汞(mercury)等有毒氣體之管制,而國會亦要求其須於2004年底以前提出國家管制標準。然而EPA於2005年正式公告「清靜空氣除汞管制規則(the Clean Air Mercury Rule,以下簡稱CAMR規則)」時,卻將燃煤電廠排放汞排除於管制名單外,引發紐澤西等14個州政府與相關環保團體的抗議,並對EPA提起聯邦訴訟。2008年2月8日聯邦上訴法院作出判決,除指出EPA對於發電廠空污之認定前後矛盾外,更認定其在未發現有新事證下擅自將發電廠所排放之空氣污染自CAMR管制名單中移除(delist),已違背反清靜空氣法案之程序要求,故推翻CAMR規則之有效性。   此後,經過密集的聽證會與討論,EPA最終於2011年3月16日正式提出「限制發電廠有毒氣體排放」的國家管制標準,對於發電廠所排放的汞、砷(arsenic)、鉻(chromium)、鎳(nickel)及其他酸性或有毒氣體加以管制,並要求電廠必須採用污染控制技術以減少製造量。   後京都議定書時代中,各國無不致力於新興能源替代方案之提出,惟於新興能源研發應用前的過渡期間仍需仰賴傳統發電技術,美國為解決傳統火力發電對於環境及人體健康所造成的傷害,提出首部國家管制標準草案,其後續對於該國能源結構可能產生何種影響,值得注意。

TOP