淺談攻擊性商標

  對於商標權之內容是否涉及對特定人士的產生不快或冒犯,以及國家是否有權禁止其註冊為商標之問題,我國法係在商標法第30條第1項第7款中規定,商標妨害公共秩序或善良風俗者,不得註冊;並經由經濟部智慧財產局訂定「商標妨害公共秩序或善良風俗審查基準」,建立認定準則,並認為應「考量註冊當時之社會環境,並就其指定使用商品或服務市場之情況、相關公眾之認知等因素綜合判斷」。

  而在美國法中,亦有 Lee v. Tam一案,針對美國專利商標局 (United States Patent and Trademark Office, USPTO)是否有權依照 The Lanham Act第2條a款規定駁回商標申請的權利進行爭執,該條規定「包含不道德、欺騙、誹謗性、貶損或誤導他人(不論生死)、組織、信仰或國家象徵等意涵、或導致前者名譽受損之圖案,不可註冊為商標」。

  該案在2015年12月22日於美國聯邦巡迴上訴法院進行判決,法院認為,儘管是具攻擊性的歧視言論,亦受到美國聯邦憲法第一修正案所保障,故美國政府不得以商標圖案的言論內容具攻擊性為理由,拒絕商標的註冊。本案經上訴於美國聯邦最高法院,最高法院於2016年9月29日已經同意其提起上訴,將對本案進行審理。

本文為「經濟部產業技術司科技專案成果」

※ 淺談攻擊性商標, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7767&no=67&tp=1 (最後瀏覽日:2025/12/01)
引註此篇文章
你可能還會想看
歐盟發布「歐盟植物品種權制度對歐盟經濟和環境影響」執行摘要,顯示歐盟植物品種權制度的影響

  歐盟植物品種事務局(Community Plant Variety Office, CPVO)與歐盟智慧財產局(European Union Intellectual Property Office, EUIPO)於2022年4月28日聯合發佈「植物品種權制度對歐盟經濟和環境影響」執行摘要(Impact of the Community Plant Variety Rights System on the EU Economy and the Environment–Executive Summary),以量化方式顯現「歐盟植物品種權」(Community Plant Variety Rights, CPVR)制度的影響: (1)若無CPVR制度,則在2020年時,歐盟耕地作物的收成量會比實際情形減少6.4%、水果減少2.6%、蔬菜減少4.7%、觀賞植物減少15.1%;換言之,因有CPVR制度帶來的額外收成,足以將耕地作物多供給予5,700萬人、水果多供給予3,800萬人,蔬菜多供給予2,800萬人。 (2)以總體經濟學(macro-economic)的角度觀之,若無CPVR制度帶來的額外收成量,歐盟在世界貿易的地位會惡化,而境內的消費者也將面臨更高的農作物價格。受CPVR制度保護的農作物對歐盟GDP之「額外」增長貢獻約為130億歐元,其中耕地作物約佔有71億歐元、水果11億歐元、蔬菜22億歐元、觀賞植物25億歐元。 (3)而因CPVR制度帶來的農作物額外收成,使歐盟農業的僱用情形提升;以耕地作物來說,增加近25,000個工作機會、園藝作物19,500個、觀賞植物45,000個,總計增加近90,000個工作機會。此僅單就上游的農業及園藝產業而言,其與下游產業(例如:食品處理業)合計增加近80萬個就業機會。 (4)不僅工作機會增加,從業者報酬也有所提高;相較於未有CPVR制度前,耕地作物從業者可獲得12.6%更高的報酬、園藝作物從業者可獲得11%更高的報酬。 (5)受有 CPVR保護之公司總計僱用了70,000名以上之員工,而其營業總額超過350億歐元;此等公司多為中小企業(SMEs),其佔有CPVR申請量90%以上,而其目前持有约歐盟整體60%的CPVR。 (6)在有CPVR制度後,歐盟農業及園藝業所排放的溫室氣體(greenhouse gas, GHG)每年減少6,200公噸;此二產業所需用水量減少了超過140億立方公尺。   綜上,由於減少對環境之衝擊、於農業與園藝上減少資源之使用、使從業者收入增加,及使消費者用更低廉價格購得農產品,故CPVR制度對於聯合國永續發展目標(Sustainable Development Goals)有所貢獻。除此之外,本執行摘要亦提及CPVR制度有潛力符合歐盟執委會(European Commission, EC)「歐洲綠色政綱」(The European Green Deal)目標。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

英國Ofcom公佈電視廣告交易機制的反競爭調查報告

  英國Ofcom在2011年12月15日公佈了有關電視廣告交易機制是否有限制或扭曲市場競爭、最終傷害消費者的反競爭調查報告。最後認定並無明確證據顯示英國當前的電視廣告交易機制妨礙競爭,因此決定不依「2002年企業法」(Enterprise Act 2002)所賦予之權限,移送競爭委員會(Competition Commission)進一步調查。   雖然英國的電視廣告市場一年仍有40億英鎊的產值,但廣電業者的收益實已長期且穩定減少中,故Ofcom同年6月啟動本諮詢與調查,並從以下三個角度檢視電視廣告市場是否存在流弊,而使廣告價格高漲、廣告獲利配置不效率、阻礙廣電業者之創新與不利閱聽眾之經驗: 1、價格不透明:電視廣告市場長期以來因聯合報價、股權交易或各類折扣,導致價格不透明,使廣告買主可能無法進行有意義的比價。但Ofcom認為廣告公司皆屬老練業者,熟悉交易內容與約款;而廣告主則可透過閱聽眾的行為反應判斷廣告成效,且證據亦顯示廣告主經常替換廣告公司以獲得更好的交易條件。 2、 捆綁銷售時段:廣電業者可能運用市場力搭售離峰時段(off-peak airtime)。但證據顯示廣告買主尚可分別購買時段;而英國每月有250萬個廣告開口,強制分別交易將造成交易成本顯著上升。 3、交易模式僵化:雖然英國的電視廣告交易模式已20年不變,但科技進步使頻道數目大增,連帶使閱聽眾分化與廣告開口爆增,證據顯示廣告部門對此適應良好。 最後Ofcom認為在有害競爭證據不明顯,且進一步調查會產生更多成本的情況下,決定仍維持商業機制,不介入管制電視廣告市場。

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

TOP