日本自動駕駛戰略本部新近政策規劃

  日本鑒於為減少交通事故與因應少子化,與汽車的ICT革命等議題,由國土交通省於2016年11月25日設立「自動駕駛戰略本部」(自動運転戦略本部),並於同年12月9日召開第一次會議。討論的範圍則包括:為實現自動駕駛的環境整備、自動駕駛技術的研發、普及與促進,以及為實現自動駕駛的實證與社會試驗。

  會議結論則由國土交通大臣指示針對「車輛的技術基準」、「年長者事故對策」、「事故發生時的賠償規則」、「大卡車列隊行走」、「以非平地休息服務站為據點的自動駕駛服務」等議題速成立工作小組,將對自動駕駛所應用技術進行各類型實證試驗。

  其中,在「以非平地休息服務站為據點的自動駕駛服務」方面,已於2017年2月展開補助試驗計畫的募集;預計驗證的項目有分別針對一般(搭載2-10人)以及大型車輛(10人以上),結合GPS、雷達、攝影機等來瞭解障礙物資訊的車輛自動控制技術。

  而在「大卡車列隊行走」方面,國土交通省則是在2016年已開始的實證試驗基礎上持續拓展。未來在2019年中後,並規劃將驗證範圍擴展至高速公路上驗證更長距離的自動駕駛。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 日本自動駕駛戰略本部新近政策規劃, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7771&no=0&tp=1 (最後瀏覽日:2025/11/21)
引註此篇文章
你可能還會想看
美國零售商Kroger聲稱零售商Lidl註冊之新商標有混淆Kroger的知名商標之虞

  Kroger成立於1883年,在美國擁有近3000家分店,為美國最大食品雜貨零售店,其註冊商標“Private Selection”相當知名,被廣泛使用在超市、便利商店及其他各種零售商店約20多年。然而在全球擁有超過10000家分店的歐洲零售店巨頭Lidl,亦於2016年9月19日於美國註冊與“Private Selection”近似的商標“Preferred Selection”。   對此,Kroger於Lidl在美國開立新門市不久之後,即於今(2017)年6月30日對Lidl起訴,主張Lidl的“Preferred Selection”與Kroger的“Private Selection”品牌商標太相似,Lidl於德國是以低價折扣作定位之連鎖超市,且產品曾被認定為劣質。Lidl的行為意圖混淆“Preferred Selection”與“Private Selection”,將稀釋Kroger的品牌知名度,不僅侵害商標亦將損及商譽,甚至從中牟取不當利益,導致不公平競爭。故Kroger據以向美國維吉尼亞州地方法院請求禁止Lidl販售使用“Preferred Selection”商標的產品。   Lidl反駁認為其商標註冊已有一段時間,Kroger卻故意選其展店亮相後才大肆攻擊Lidl的新品牌,嚴重干擾Lidl的宣傳效益,更何況兩者商標名稱不同,標誌圖形的設計也不同。今年7月25日,美國維吉尼亞州地方法院法官表示,儘管品牌標誌看起來相似,但兩者並無相同或相似的含意,拒絕授予Kroger聲請之禁令。惟兩造於今年9月達成協議,請求法院駁回訴訟,而Lidl最終於今年9月12日放棄“Preferred Selection”商標權。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

日本專利局公布大學研發成果落地運用案例研究,協助大學衍生新創

日本專利局(特許庁)自2019年啟動「智財戰略規劃師派遣計畫」(知財戦略デザイナー派遣事業),向大專院校派遣智財戰略規劃師,發掘大學內部埋藏之研發成果,協助研發成果落地運用或衍生新創公司,進而帶動產業創新。為支援智財戰略規劃師達成上述工作,日本專利局於2023年4月14日公布「大學研究成果衍生新創案例研究」(大学研究成果の社会実装ケーススタディ,以下簡稱案例集),介紹大學衍生新創重要案例,並針對新創公司設立、簽約等各階段,以對話形式說明應注意事項。 案例集分為第1章「新創篇」、第2章「與企業合作篇」,以及第3章「其他篇」,每篇介紹不同案例,一共收錄9個案例,如「以和企業共有之專利作價,投資設立之新創公司」、「AI新創公司之商業模式」、「新藥開發平臺相關之商業模式」、「活用智財戰略設立之新創公司」、「以與企業共同研究為基礎之專利申請戰略」等。上述案例均依照「發現發掘」(発明発掘)、「制定智財戰略」、「預備衍生新創」(社会実装準備)、「支援後階段」等4個流程展開,以圖文及對話形式,提醒規劃師在各階段應注意之支援重點及注意事項,並以專欄形式說明失敗案例,期能作為大學研究者、產學合作窗口衍生新創之參考。

美國衛生部門公布個人健康資訊外洩責任實施綱領

  美國健康與人類服務部(Secretary of Health and Human Services;以下簡稱HHS),於2009年4月17日公布「個人健康資訊外洩通知責任實施綱領」(Guidance Specifying the Technologies and Methodologies That Render Protected Health Information Unusable, Unreadable, or Indecipherable to Unauthorized Individuals for Purposes of the Breach Notification Requirements under Section 13402 of Title XIII (Health Information Technology for Economic and Clinical Health Act) of the American Recovery and Reinvestment Act of 2009; Request for Information;以下簡稱本綱領)。本綱領為美國迄今唯一聯盟層級之資料外洩通知責任實施細則,並可望對美國迄今四十餘州之個資外洩通知責任法制,產生重大影響。   本綱領之訂定法源,係依據美國國會於2009年2月17日通過之經濟與臨床健康資訊科技法(Health Information Technology for Economic and Clinical Health Act;以下簡稱HITECH),HITECH並屬於2009年「美國經濟復甦暨再投資法」(America Recovery and Reinvestment Act;簡稱ARRA)之部分內容。   HITECH將個人健康資訊外洩通知責任的適用主體,從「擁有」健康資訊之機構或組織,進一步擴大至任何「接觸、維護、保留、修改、紀錄、儲存、消除,或以其他任何形式持有、使用或揭露安全性不足之健康資訊」的機構或組織。此外,HITECH並規定具體之資料外洩通知方法,即必需向當事人(資訊主體)以「即時」(獲知外洩事件後60天內)、「適當」(書面、或輔以電話、網站公告形式)之方式通知。不過,由於通知之範圍僅限於發生「安全性不足之健康資訊」外洩,故對於「安全性不足」之定義,HITECH即交由HHS制定相關施行細則規範。   HHS本次通過之實施辦法,將「安全」之資料定義「無法為第三人使用或辨識」,至於何謂無法使用或辨識,本綱領明定有兩種情形,一是資料透過適當之加密,使其即使外洩亦無法為他人辨識,另一則是該外洩資訊之儲存媒介(書面或電子形式)已被收回銷毀,故他人無法再辨識內容。   值得注意的是,有異於美國各州法對於加密標準之不明確態度,本綱領已指明特定之技術標準,方為其認可之「經適當加密」,其認可清單包含國家標準與技術研究院(National Institute of Standards and Technology)公布之Special Publication 800-111,與聯邦資訊處理標準140-2。換言之,此次加密標準之公布,已為相關業者提供一可能之「安全港」保護,使業者倘不幸遭遇資料外洩事件,得主張資料已施行適當之加密保護,即無需承擔龐大外洩通知成本之衡平規定。

TOP