日本最高法院最近裁定,日立( Hitachi )必須支付一億六千三百萬日圓(約四千五百萬台幣)給取得三項光碟讀取技術發明專利的前工程師米澤成二( Seiji Yonezawa )。一九九六年退休的米澤,於一九七三到一九七七年間,將其開發出來的三項有關光碟讀取技術發明專利移轉給任職的日立公司,當時他僅獲日立支付二百三十萬日圓酬勞,米澤嫌酬勞太少而提起訴訟,要求日立支付二億八千萬日圓酬勞。 東京地方法院於二○○二年作成的裁定,認定日立因該專利在日本國內所獲利益約兩億五千萬日圓,依米澤的貢獻度百分之十四計算,命令日立支付約三千五百萬日圓。但在日立上訴至東京高等法院的第二審,高院於二○○四年裁定,加上日立在英美等六個外國取得專利所獲利益約共十一億八千萬日圓,扣除已支付金額,日立應再支付約一億六千三百萬日圓酬勞給米澤。米澤原本訴請日立支付發明報酬兩億八千萬日圓,此案在最高法院駁回日立提起的上訴後判決定讞。 根據日本特許法(專利法)規定,受雇人取得發明專利時,企業需支付相對報酬予發明人,不過對於報酬之合理性,受雇人及雇用人近年來迭有爭議並訴諸司法解決。雖然日本國會在 2004 年 5 月 28 日 通過專利法修正案,進一步使報酬之計算要件更加具體、明確化,日本專利局也隨後在 2004 年 11 月公布「新受雇人發明制度之程序個案研究」( The Case Studies of the Procedures under the New Employee Invention System ),以問答方式闡釋新修正之發明人報酬規定之意義與適用方法,並尋求一個較為合理的標準,提供受雇人與雇用人間訂定報酬金時之參考。 然而,境外專利權是否應該列入報酬金之計算,新法則未規定,故此問題仍然存在,對此下級法院的判決不一,日本最高法院最近做出確定在海外取得的專利亦得支付相對報酬之裁決,這項司法裁定,勢必會影響到擁有國外專利的眾多日本企業。
醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議醫療科技公司轉型提供資料類型產品解決方案於美國之智財權布局建議 資訊工業策進會科技法律研究所 2023年05月31日 過去,醫療科技公司僅專注於開發針對醫療問題的硬體解決方案,近年這些企業則致力於轉型開發收集及利用大量病人、資料提供者資料之產品,而轉變成資料平台公司,而更可以全面了解病人及客戶生活習慣及健康狀況。 其中許多解決方案均利用人工智慧(Artificial Intelligence, AI)及機器學習(Machine Learning, ML),相較傳統上研發成果多為硬體設備,現今則轉變成出現大量軟體解決方案,保護研發成果之方式將發生改變,如何選擇合適的智慧財產權保護研發成果成為企業重要課題,此亦影響企業如何做智慧財產布局及擬定公司相關經營策略,因此建議企業——尤其是開發醫療資訊平台之醫療科技公司,特別是致力於開發醫療器材軟體(Software as a Medical Device, SaMD)、醫療設備嵌入式軟體(Software In a Medical Device, SiMD)及應用於醫療技術中的人工智慧等新興領域時可以參考以下提供之思考方向選擇對於企業發展最適切之智慧財產權保護態樣。[1] 研發成果如欲獲得專利保護,該發明必須係獨一無二且可以傳授的——即人們不能將自然發生或不可再現的事物申請專利,因為發明需透過專利以清楚的方式概述,並明確定義專利內容,並向公眾揭露,以便於申請人取得專利、並於專利期限屆滿後(專利保護期限因各國法規、專利類型而將有所不同,建議企業應了解欲布局之國家相關法規規定,如台灣之發明專利[20年]、新型專利[10年]、設計專利[15年]),使大眾得藉以實施該技術內容。[2] 在美國,專利係由美國專利商標局賦予所有權人於一定期間內壟斷其發明之權利,即美國聯邦法律更使專利所有權人在專利權效期內得以禁止他人於該期間內於美國製造、使用、銷售或進口至美國這項已獲得專利保護之發明,此給予專利權人一個得以建立一個阻止他人進入市場的巨大障礙,可防止競爭及保護專利權人可以自由實施該權利。[3] 因專利有上述特性,文章作者建議,如裝置(device)、該裝置使用之軟體,對於從事新藥開發之藥廠,於保護新穎成分(New Chemical Entities)、相關之治療方法及人工智慧相關發明較適合以專利保護。[4] 營業秘密係指資訊擁有者已盡合理努力保密,且不為公眾所周知或非可被公眾輕易探知而具有獨立經濟價值的,任何形式及類型之資訊。合理努力可能包括(但不限於),要求員工簽署保密協議、定期提醒員工其負有保密義務(如:針對職務不同/所從事不同工作之員工,保密義務內容、程度、時間是否有所不同?)、踐行必要而知悉(need to know) 原則(如:執行不同工作之人員是否可互相存取各自的資料? 抑或僅能存取自己工作所需之資料?)、佈署IT安全措施或辦公室安全措施之狀況(如:是否有門禁?資料如有異常存取狀況時是否有示警機制?)並須即時調查及採取行動打擊涉及盜用營業秘密之行為(如:是否有相關通報不當使用營業秘密之管道及監控機制?)[5] 在美國,傳統上營業秘密之保護是結合各州法律而成,除了紐約州及北卡羅萊納州以外,所有州都頒布了其特有版本的《統一營業秘密法》(Uniform Trade Secrets Act, UTSA)——係一項1979年頒布的統一法案。於2016年,國會又頒布了《保護營業秘密法Defend Trade Secrets Act, DTSA》,該法案保障當事人於聯邦法院提起營業秘密訴訟之權利,且只要促進犯罪行為之行為發生於美國,當事人即可於國外進行訴訟,此外,《統一營業秘密法》中規定營業秘密包含公式、模式、彙編、程式、設備、方法、技術或過程。而依《保護營業秘密法》(Defend Trade Secrets Act, DTSA),營業秘密可為任何形式,無論係以物理、電子、圖形、攝影或書面形式儲存、編輯或紀錄之財務、商業、科學、科技、經濟或工程資訊均為營業秘密之範疇,因此,營業秘密之適用範圍較廣,於美國甚至抽象之想法均可受營業秘密保護。[6] 與僅提供有限保護期限之專利有別,如欲獲得營業秘密之保護,僅需資訊持續保密並存在並持續存有價值,該資訊即會持續受到營業秘密保護並擁有無限的有效期限,亦即,只要該資訊仍為秘密,即受到營業秘密之保護。如:可口可樂已將其配方作為營業秘密保護了130多年之久。惟與專利不同的是營業秘密一但被公眾周知或得以透過適當方式獨立開發(如競爭對手自己獨立開發而產出之資訊),就將失去營業秘密之保護。[7] 因為營業秘密之特性,諸如蛋白質結構、客戶清單、機器學習演算法、原始碼、化學製程參數(如:會產生化學反應之溫度或壓力)、甚至是醫療科技公司近年致力經營的人工智慧領域所產出的人工智慧、新的模型訓練方法、優化模型參數、消極專有技術(如:不該做什麼)。[8] 惟選擇專利抑或營業秘密之方式保護其研發成果將視企業的業務為何決定,如缺乏透明度之產業可能較適合以營業秘密方式保護,而非專利。例如:網路安全公司可能傾向於營業秘密保護,因為申請專利揭露其機密安全演算法可使競爭對手開發競爭產品或使駭客進行量身訂製之攻擊。相較之下,製造容易檢測、針對消費者之電子產品之企業更依賴專利保護,製造具有行業標準化品質之產品之企業亦是如此。[9] 總體而言,是否容易被逆向工程將會是決定以專利或營業秘密保護之關鍵性調查方式。因申請專利必須揭露細節事項,將對廣泛保護資料為基礎之軟體(且有使用人工智慧或機器學習)較具挑戰性,故專利較適合保護裝置(device)及會相互作用之實體產品和軟體。而營業秘密則要求資料所有人無限期地維持秘密性,亦須注意自己的想法獲得他人關注時遭仿效之風險,故較適合造價高或難以仿效的軟體、製造方法或產品。[10] 而對於生技醫療公司而言,其應考量使用混和策略以保護人工智慧相關之創新,如:專有之原始和訓練資料、模型之優化參數、將專有技術用於訓練模型及其他難以進行逆向工程之人工智慧相關的此類機密資訊,可能較適合用營業秘密保護,同時該技術的其他方面,如人工智慧系統或使用其開發之藥物則可透過專利保護。[11]惟不論企業決定要將該資訊做為營業秘密保護或申請專利保護,企業對於研究人員發表相關資訊的行為均應審慎評估,避免因揭露而喪失專利之新穎性或營業秘密之秘密性的情形。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Kristin Havaranek, Martin Gomez, Matt Wetzel, Steven TJoe & Stephanie Philbin, Top 5 IP Considerations for Medtech Companies Transitioning To Data-enabled Product Solutions (2023), https://medcitynews.com/2023/01/top-5-ip-considerations-for-medtech-companies-transitioning-to-data-enabled-product-solutions/ (last visited June 1,2023). [2]John Quinn, Protecting Inventions Through Patents and Trade Secret (2023), https://www.newsweek.com/protecting-inventions-through-patents-trade-secrets-1788352 (last visited May 30, 2023). [3]Id. [4]Charles Collins-Chase, Kassanbra M. Officer & Xinrui Zhang, United States: Strategic Intellectual Property Considerations For Protecting AI Innovations In Life Sciences (2023), https://www.mondaq.com/unitedstates/trade-secrets/1276042/strategic-intellectual-property-considerations-for-protecting-ai-innovations-in-life-sciences (last visited May 30, 2023) [5]Id. [6]John Quinn, supra note 2. [7]Id. [8]Collins-Chase et al., supra note 4. [9]John Quinn, supra note 2. [10]Havranek et al., supra note 1. [11]Collins-Chase et al., supra note 4.
歐洲議會通過《人工智慧法案》朝向全球首部人工智慧監管標準邁進下一步歐洲議會通過《人工智慧法案》 朝向全球首部人工智慧監管標準邁進下一步 資訊工業策進會科技法律研究所 2023年06月26日 觀察今年的科技盛事屬ChatGPT討論度最高,將人們從區塊鏈、元宇宙中,帶入人工智慧(AI)領域的新發展。ChatGPT於2022年11月由OpenAI開發的生成式人工智慧,透過深度學習模型,理解和生成自然語言,其功能包含回答各類型問題(如科學、歷史)、生成邏輯結構之文章(如翻譯、新聞標題)、圖形、影像等內容。然而對於人工智慧的發展,究竟如何去處理人機間互動關係,對於風險之管理及相關應用之規範又該如何,或許可從歐盟的法制發展看出端倪。 壹、事件摘要 面對人工智慧的發展及應用,歐盟執委會(European Commission)早在2018年6月成立人工智慧高級專家組(AI HLEG),並於隔年(2019)4月提出「可信賴的人工智慧倫理準則」(Ethics Guidelines for Trustworthy AI),要求人工智慧需遵守人類自主、傷害預防、公平、透明公開等倫理原則。於2021年4月21日歐盟執委會提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(以下稱人工智慧法案),於2023年內部市場委員會(Internal Market Committee)與公民自由委員會(Civil Liberties Committee)通過並交由歐洲議會審議(European Parliament),最終《人工智慧法案》於2023年6月14日通過。後續將再歐盟理事會(Council of the European Union)與辯論協商,尋求具共識的最終文本[1]。 貳、重點說明 由於「歐盟議會通過」不等於「法案通過」,實際上歐盟立法機制不同於我國,以下透過法案內容說明的契機,概述一般情況下歐盟之立法流程: 一、歐盟立法過程 通常情況下,法案由歐盟執委會(下簡稱執委會)提出,送交歐盟理事會及歐洲議會,作為歐盟的「立法者」歐洲理事會(下簡稱理事會)與歐洲議會(下簡稱議會)將針對法案獨立討論並取得各自機關內之共識。大致上立法程序有可分為三階段,在一讀階段若理事會與議會對於執委會版本無修改且通過,則法案通過,若任一機關修改,則會進行到二讀階段。針對法案二讀若仍無法取得共識,則可召開調解委員會(Conciliation)協商,取得共識後進入三讀。簡單來說,法案是否能通過,取決於理事會與議會是否取得共識,並於各自機關內表決通過[2]。 目前《人工智慧法案》仍處於一讀階段,由於法案具備爭議性且人工智慧發展所因應而生之爭議迫在眉睫,議會通過後將與執委會、理事會進入「三方會談」(Trilogue)的非正式會議,期望針對法案內容取得共識。 二、人工智慧法案 (一)規範客體 《人工智慧法案》依風險及危害性程度分級,其中「不可接受風險」因抵觸歐盟基本價值原則禁止(符合公益目標,如重大或特定犯罪調查、防止人身安全遭受危害等例外許可)。「高風險」則為法案規範之重點,除針對系統技術穩健、資料處理及保存訂有規範外,針對人為介入、安全性等也訂定標準。 而針對高風險之範疇,此次議會決議即擴大其適用範圍,將涉及兒童認知、情緒等教育及深度偽造技術(Deepfake)納入高風險系統,並強調應遵循歐盟個人資料保護規範。此外對於社會具有高影響力之系統或社群平臺(法案以4500萬用戶做為判斷基準),由執委會評估是否列為高風險系統。針對目前討論度高的生成式人工智慧(ChatGPT),議會針對法案增訂其系統於訓練及應用目的上,應揭露其為生成式人工智慧所產出之內容或結果,並摘要說明所涉及之智慧財產權[3]。 (二)禁止項目 關於《人工智慧法案》對於高風險系統之要求,從執委會及理事會的觀點來看,原則上重點在於對弱勢的保護及生物資料辨識之權限。歐盟禁止人工智慧系統影響身理及心理,包含對於特定族群如孩童、身心障礙者等弱勢族群之不平等待遇。同時原則禁止即時遠端的生物辨識利用,包含對於人性分析、動作預測等對於人類評價、分類之應用,例外情況如犯罪調查、協尋失蹤兒童、預防恐怖攻擊、關鍵基礎設施破壞等情況時方被允許。此次議會決議提高禁止即時遠端生物辨識的標準,包含納入敏感資訊的蒐集如性別、種族、政治傾向等,及其他臉部辨識、執法、邊境管制、情緒辨識等項目[4]。 參、事件評析 有關《人工智慧法案》雖歐洲議會已一讀通過,然而後續仍要面對與歐盟理事會的協商討論,並取得共識才能規範整個歐盟市場。因此上述規範仍有變數,但仍可推敲出歐盟對於人工智慧(含生成式)的應用規範態度。在面對日新月異的新興科技發展,其立法管制措施也將隨著橫向發展,納入更多種面向並預測其走向趨勢。因人工智慧有應用多元無法一概而論及管制阻礙創新等疑慮,觀察目前國際上仍以政策或指引等文件,宣示人工智慧應用倫理原則或其風險之管理,偏重產業推動與自律。 觀察歐盟《人工智慧法案》之監管目的,似期望透過其市場規模影響國際間對於人工智慧的監管標準。倘若法案後續順利完成協商並取得共識通過,對於如OpenAI等大型人工系統開發商或社群平臺等,若經執委會評估認定為高風險系統,勢必對於未來開發、應用帶來一定衝擊。因此,歐盟對於人工智慧監管的態度及措施實則牽一髮而動全身,仍有持續觀察之必要。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The AI Act, Future of Life Institute, https://artificialintelligenceact.eu/developments/ (last visited Jun. 20, 2023) [2]The ordinary legislative procedure, Council of European Union, https://www.consilium.europa.eu/en/council-eu/decision-making/ordinary-legislative-procedure/ (last visited Jun. 19, 2023) [3]EU AI Act: first regulation on artificial intelligence, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Jun. 21, 2023) [4]MEPs ready to negotiate first-ever rules for safe and transparent AI, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/press-room/20230609IPR96212/meps-ready-to-negotiate-first-ever-rules-for-safe-and-transparent-ai(last visited Jun. 21, 2023)
新加坡將推動國家電子醫療紀錄新加坡自今年(2018年)1月5日起推動「醫療服務法案(Healthcare Services Bill)」之制定,該法案預計取代現有「私人醫院和醫療診所法(Private Hospitals and Medical Clinics Act)」。其中「國家電子醫療紀錄(National Electronic Health Record),下稱NEHR」將整合並改善國營醫療機構及非國營醫療機構兩種醫療紀錄無法互通之情形,而行動醫療及遠端醫療亦納入之。 根據目前之諮詢狀況(已於今年2月15日結束),提案單位衛生部(Ministry of Health)表示,由於現代醫療技術已趨近複雜,若能整合各醫療單位之就診紀錄,將可大幅提升醫療效率,特別是在急診的狀況下,整合過的單一病歷將可降低評估所需的時間。 而對於病患之個資方面保護,該部表示,首先,NEHR並不會蒐集全部患者的醫療參數,只有患者之核心醫療參數才會上傳至NEHR之資料庫內,此外亦不提供非醫療目的外之使用(例如就業及保險評估)。而為降低非法使用之機率,非法使用亦將處罰之。 另外為尊重病患個人之資訊自決權,NEHR亦提供了病患選擇退出機制(opt-out)以作為個資保護的最後屏障。然而該退出機制仍不同於一般的退出機制(即退出後不得蒐集、處理及利用),該機制僅禁止各醫療機構讀取該病患之醫療紀錄,但是各該機構依NHER之架構仍應將每次就診紀錄上傳之,此一設計係避免緊急情況下或病患同意讀取電子病歷時,卻無醫療紀錄可供查詢之窘境。