日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。
在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。
物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。
人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。
由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。
本文為「經濟部產業技術司科技專案成果」
歐盟資料保護委員會(European Data Protection Board, EDPB)於2023年12月13日回覆歐盟執行委員會(European Commission, EC)有關Cookie協議原則草案(Cookie Draft Pledge Principles)之諮詢。該草案旨在處理「Cookie疲勞」(Cookie fatigue)所造成的隱私權保護不周全之處。 在電子通訊隱私指令(ePrivacy Directive)以及GDPR規範下,由於現行同意機制複雜,造成用戶對Cookie感到疲勞,進而放棄主張隱私偏好。 為了避免「Cookie疲勞」,EDPB提出以下原則和建議,大致可以分為三點: 一、簡化Cookie不必要的資訊 1.基本運作所需之Cookie(essential cookies)無需用戶同意,故不必呈現於同意選項,以減少用戶需閱讀和理解的資訊。 2.關於接受或拒絕Cookie追蹤的後果,應以簡潔、清楚、易於選擇的方式呈現。 3.一旦用戶拒絕Cookie追蹤,一年內不得再次要求同意。 二、確保資訊透明 1.若網站或應用程式的內容涉及廣告時,應在用戶首次訪問時進行說明。 2.不僅是同意追蹤的Cookie,用於選擇廣告模式的Cookie,仍需單獨同意。 三、維持有效同意 1.應同時顯示「接受」和「拒絕」按鈕,提供用戶拒絕Cookie追蹤的選項。 2.在提供Cookie追蹤選項時,除了接受全部的廣告追蹤或付費服務外,應提供用戶另一種較不侵犯隱私的廣告形式。 3.鼓勵應用程式提前記錄用戶的Cookie偏好,但強調在用戶表達同意時必須謹慎處理,預先勾選的「同意」不構成有效同意。 EC表示,該草案目的在於簡化用戶對Cookie和個人化廣告選擇的管理,雖然為了避免Cookie疲勞而簡化資訊,仍應確保用戶對於同意Cookie追蹤,是自願、具體、知情且明確的同意。將於後續參考EDPB之建議,並與利害關係人進行討論後,制定相關法規。
澳洲「頻譜改革」(Spectrum Reform)澳洲通訊暨藝術部(Department of Communication and the Arts)在2019年10月宣布,依據通訊部(Department of Communications,為通訊暨藝術部的前身)在2015年所發布頻譜檢視報告(Spectrum Review Report)之建議,推行頻譜改革(Spectrum Reform)措施,以落實改善頻譜管理並建立更有效的頻譜監管框架。其中最重要者為分階段修正現行之無線通訊法(Radiocommunication Act 1992),包含為頻譜使用者提供更高的抗干擾保護,並減除其投資頻譜的不確定風險,例如消除頻譜分配與重分配過程中不必要的限制、延長頻譜許可期限至20年、提供清楚明確的頻譜許可更新指引,並盡可能使設備執照(Apparatus Licence)與頻譜執照(Spectrum Licence)保持一致性。 因應現代通訊技術的發展,澳洲政府自2018年來持續推動頻譜管理現代化(Modernising spectrum management in Australia),包含提高頻譜管理的透明度與定價效率,以達成提高頻譜的使用效率,並建立單一的頻譜釋照框架,這些都將納入現正推動無線通訊法的修正中。此外,澳洲通訊與媒體局於2019年10月25日宣布將釋出26 GH頻段中的2.4 GHz(25.1至27.5 GHz),預計在2021年以拍賣方式分配頻譜執照,除了頻譜釋出外,通訊與媒體局計畫藉由設備執照、類別執照(Class Licence)以及頻譜執照三者的靈活組合,滿足澳洲5G技術應用的頻譜需求,並符合無線通訊法第3條「透過確保有效分配與使用無線電頻譜以最大化其使用效益,進而提升使用無線電頻譜之整理公共利益」之目標,來推動5G技術與創新應用的早期部署。
檢視英國無線寬頻規畫方向Ofcom從行動載具、應用程式的蓬勃發展,預見英國10年內將會超過500億台載具透過與機器對機器通訊(Machine-to Machine Communication,M2M)、智慧聯網(Internet of Things)連接,應用在各種領域,包括運輸、健康照顧、能源及農業。有鑑於新興服務普及後,將使2030年民眾使用行動數據總量將是現在25倍,Ofcom在今(2013)年11月以頻譜有效利用為宗旨,提出英國無線通訊基礎藍圖諮詢。 根據本份藍圖顯示,Ofcom為了促使頻譜有效利用,除了持續評估廣播、無線相機與麥克風移頻可行性外,已確認的頻譜規畫為以下三個方向: 1、2.3GHz與3.4GHz: Ofcom已與國防部(Ministry of Defence)共同合作,將原本公部門使用的2.3G、3.4G頻段,轉移至商業使用,預計將於2015-2016年進行拍賣。除此之外,Ofcom將持續與政府部門合作,讓更多頻段能釋出於商用。 2、700MHz:為了讓民眾皆可得到「黃金頻譜」(Prime Spectrum)所帶來之利益(例如具有高度覆蓋性), Ofcom已規劃2018年將釋出部分頻譜供行動寬頻使用,讓更多民眾可享有無所不在網路帶來的便利性。 3、「閒置頻譜」(White Space):英國未來6個月內,將會超過20個組織參與Ofcom所推動的閒置頻譜技術試點計畫。Ofcom將透過各種創新應用服務的測試,讓閒置頻譜與新興服務可相顯益彰。 Ofcom行動寬頻政策除了頻譜重新規劃,解決未來英國行動數據可能產生的「容量危機」(capacity crunch )外;另一方面,政府亦透過提高3G業者涵蓋義務、賦予1張4G執照具有覆蓋義務、以及促使偏遠地區增加基礎建設等方式,維護民眾取得完善服務品質。因此,從上述的政策走向,可以預見英國業者未來所提供的行動寬頻,將朝向穩定的服務與合理的價格演進。當民眾使用新興服務不再有網路中斷、或費用過高之疑慮後,將會增加民眾對資通訊軟、硬體的黏著性,使國家更具有競爭力。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。