英國文化、媒體暨體育部2017年3月8日發布「次世代行動技術:英國的5G策略」,此舉將會加速英國網路基礎建設更新並促進智慧聯網之發展。這份策略書提出了幾個重要方面來採取行動:
本文為「經濟部產業技術司科技專案成果」
世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。
何謂「工業4.0」?所謂工業4.0(Industrie 4.0)乃係將產品用最先進的資訊和通訊技術緊密結合。其發展背後的原動力是快速增長的經濟和社會的數位化。在德國,它不斷地在改變未來產品的生產及加工方式:自蒸汽機、生產線、電子和電腦技術之後,現在確認了「智慧工廠」(Smart Factories)乃是第四次工業革命。 德國「工業4.0」一詞源於2011年德國教育與研究部(BMBF)在其高科技策略(Hightech-Strategie)下的研發計畫。而如何落實工業4.0,則可從德國科學技術院(Deutsche Akademie der Technikwissenschaften, acatech) 與德國高科技策略之研究聯盟顧問委員會(Forschungsunion, Wirtschaft und Wissenschaft begleiten die Hightech-Strategie)共同提出之「工業4.0:實踐建議報告書」 (Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0)窺見整體計畫。 它的技術基礎是資訊科技、數位化的網路系統,藉由該系統,可以實現超強的自行組織運作的生產流程:人、機器、設備、物流和產品在工業4.0中,得以在同一個平台上相互溝通協作。不同企業間的生產及運送過程可以更聰明地以資訊科技技術相互地溝通,更為有效和彈性地生產。 如此一來將有助於產生智慧型新創價值的供應鏈,其囊括產品生命週期的各階段-從開發、生產、應用和維修一直到回收產品階段。藉此,一方面相關的服務可從客戶對產品想法一直到產品的回收都包括在內。因此,企業能夠更容易地根據個別客戶的要求生產定制產品。客製化的產品生產和維修可能會成為新的標準。另一方面,雖然是生產個性化商品但生產成本仍可以降低。藉由新創價值供應鏈相關企業的相互串聯,使產品不再只是各個流程得以優化,而係整體的創新價值鍊的整體最適化。如果所有資訊都能即時提供,一個公司可以儘早快速回應的某些原材料的短缺,生產過程可以跨企業地調整控制,使其更節省原料和能源。總體而言,生產效率能夠提高,加強企業的競爭力和提高生產彈性。
美國通過最新的電子醫療紀錄之隱私與安全標準美國衛生部隸屬之醫療資訊科技標準委員會(Health IT Standards Committee)為了因應「2009年經濟復甦暨再投資法」(America Recovery and Reinvestment Act, “ARRA”)的通過,制定了新的電子醫療紀錄的隱私、安全標準,以擴大保護電子醫療紀錄的使用安全。 這次制定的電子醫療紀錄的隱私、安全標準,將透過具有足夠防護能力的醫療資訊科技系統標準,來保護電子醫療紀錄的交換,並且擴大適用範圍到醫療照護廠商與提供者,要求其必須在2011年前達到幾項資訊的使用控制標準,包括「醫療保險可攜與責任法」(Health Insurance Portability and Accountability Act, “HIPAA”)與「加密促進標準」(Advanced Encryption Standard)之相關規定,以完備個人電子醫療資訊的保護網。 在此次訂立的標準之下,任何人員或是應用程式欲使用與接近電子醫療紀錄,應符合法律所授予的接近與使用之要件。同時,處理個人醫療資訊的系統,也必須具備對個人醫療資訊加密與解密的能力,以保障個人醫療資訊的安全與完整。除了以上的要求,這些標準也要求相關的適用機構,必須在2013年以前完成符合病歷交換格式(HL7)的使用接近控制、安全宣示標記語言(Security Assertion Mark-up Language, “SAML”)、網路服務認證(Web Service Trust, “WS-Trust”)以及促進資訊標準建置組織(Organization for the Advancement of Structured Information Standards, “OASIS”)的機制,以保障醫療資訊的安全。
外掛程式開發公司Bossland GmbH指控暴雪娛樂竊取外掛程式的原始碼曾開發「暴雪英霸」、「暗黑破壞神」、「魔獸世界」等多款人氣電玩遊戲的暴雪娛樂公司(Blizzard Entertainment, Inc.)素來對遊戲中的作弊外掛程式採取嚴厲的打擊手段。暴雪娛樂日前對於「暴雪英霸」遊戲中的外掛全自動機器人程式(cheating bot)採取行動,對外掛程式開發公司德商Bossland GmbH的開發者James Enright及數名匿名工程師提出著作權侵權訴訟,並指控其外掛程式讓玩家在遊戲中作弊,影響遊戲的公平性及其他玩家的娛樂,而且損及暴雪娛樂公司的獲益。James Enright最後與暴雪娛樂達成協議,交出外掛程式的原始碼。 隨後,Bossland GmbH公司控訴暴雪娛樂公司偷走他們的原始碼。Bossland GmbH的執行長Zwetan Leschew表示,James Enright所交出外掛程式原始碼的智慧財產權屬於Bossland GmbH公司,James Enright是Bossland GmbH公司的自由程式開發者,暴雪娛樂公司已經於德國參與了數個對自動機器人程式開發者的訴訟,對於James Enright與Bossland GmbH之間的關係應有所了解。從暴雪娛樂公司和James Enright的協議可以看出,暴雪娛樂公司要求James Enright將程式原始碼交出,以換取訴訟的停止。 暴雪娛樂公司發布聲明表示,暴雪娛樂已在德國贏得了多起與Bossland GmbH公司的訴訟,儘管他們利用策略手段來拖延正在進行的訴訟程序,仍堅信法院制度會繼續證實我們的主張,而且最終會阻止作弊全自動機器人程式的散布。