日本內閣官房提出未來投資戰略報告加速機器人實用及活化

  日本內閣官房日本經濟再生總合事務局(内閣官房日本経済再生総合事務局)在2017年6月9日第10次「未來投資會議」中提出未來投資戰略2017報告(未来投資戦略2017~Society 5.0 の実現に向けた改革~),在成長的戰略成果(5)日本第四次產業革命及新經濟的展開中,分別對於機器人實用、物聯網(IOT)、大數據(BIG DATA)、人工智慧(AI)等提出成果及未來計畫。

  機器人加速實用化:首先,機器人廣泛利用在商業設施、機場等日常生活空間,於2016年9月羽田機場設置機器人實驗室「Haneda Robotics Lab」,利用機器人改善服務並補充勞動力。有關打掃清潔、協助移動、查詢服務等17種機器人,將進行實證實驗。而路面協助行走型機器人「RT.1」已經完成,於2015年生活協助型機器人之安全性得到國際認證,其後發展之「RT.2」將使用於長期照顧層面。其次,開發農業使用之自動駕駛拖車,並提供工作實際狀況和土壤狀況之電子管理服務。今年6月開始商業化之自動駕駛顯示器,可以監控自動駕駛耕作機器進行自動耕作等。在物流管理方面,於2018年將於山間部等地區進行無人機的包裹遞送,2020年將在都會區全面無人包裹遞送。預計將與日立等相關公司,進行物流管理系統之開發及活用福島機器人測試場域。

本文為「經濟部產業技術司科技專案成果」

※ 日本內閣官房提出未來投資戰略報告加速機器人實用及活化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7846&no=67&tp=5 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
英國修正公布施行「2017年智慧財產權不正當威脅法」,使智慧財產權之法規範更具明確性

  英國智慧財產局於2017年10月1日修正公布施行智慧財產權不正當威脅法(IP Unjustified Threats Act 2017),使智慧財產權之法規範更具明確及一致性,並協助企業免於昂貴的訴訟費用。   所謂智慧財產權之不正當威脅(unjustified threat)係指無智慧財產權、智慧財產權已過期或無效、或雖未實際發生智慧財產權之侵權事實,卻對他人提起侵權之法律行為或措施,該行為耗費成本、引起市場混亂,致使客戶出走並造成企業合法販售商品或服務之業務停滯,並扼殺智慧財產創新之本質,破壞市場衡平。   因涉及智慧財產侵權之法規範複雜、不明確或不一致,且當有侵權之虞尚未進入司法審判程序前其紛爭難以解決,致使智慧財產權人(特別是擁有智慧財產權之中小企業)不願意實施其權利。因此,修正公布施行智慧財產權不正當威脅法將有助於智慧財產權人或第三人知悉何種行為算是威脅,提供明確之規範框架,鼓勵企業建立商談(talk first)文化,使爭議雙方可交換訊息以解決紛爭,而非興訟。並使企業或個人在智慧財產權爭議中取得公平合理的地位,以保護客戶及供應鏈(包括零售商或供應商),避免企業或個人因不正當威脅、惡性之商業競爭,而遭受損害。再者,智慧財產權之不正當威脅法適用於專利權、商標權及設計權,使智慧財產權法複雜之規範更趨明確且一致。

英國國家醫療服務體系(NHS)公布國家資料退出(Opt-out)操作政策指導文件

  個人健康資料共享向為英國資料保護爭議。2017年英國資訊專員辦公室(ICO)認定Google旗下人工智慧部門DeepMind與英國國家醫療服務體系(NHS)的資料共享協議違反英國資料保護法後,英國衛生部(Department of Health and Social Care)於今年(2018)5月修正施行新「國家資料退出指令」(National data opt-out Direction 2018),英國健康與社會照護相關機構得參考國家醫療服務體系(NHS)10月公布之國家資料退出操作政策指導文件(National Data Opt-out Operational Policy Guidance Document)規劃病患退出權行使機制。   該指導文件主要在闡釋英國病患退出權行使之整體政策,以及具體落實建議作法,例如: 退出因應措施。未來英國病患表示退出國家資料共享者,相關機構應配合完整移除資料,並不得保留重新識別(de-identify)可能性; 退出權行使。因指令不溯及既往適用,因此修正施行前已合法處理提供共享之資料,不必因此中止或另行進行去識別化等資料二次處理;此外,病患得動態行使其退出權,於退出後重新加入國家資料共享體系;應注意的是,退出權的行使,採整體性行使,亦即,病患不得選擇部分加入(如僅同意特定臨床試驗的資料共享); 例外得限制退出權情形。病患資料之共享,如係基於當事人同意(consent)、傳染病防治(communicable disease and risks to public health)、重大公共利益(overriding public interest)、法定義務或配合司法調查(information required by law or court order)等4種情形之一者,健康與社會照護相關機構得例外限制病患之退出權行使。   NHS已於今年9月完成國家資料退出服務之資料保護影響評估(DPIA),評估結果認為非屬高風險,因此不會向ICO諮詢資料保護風險。後續英國相關機構應配合於2020年5月前完成病患資料共享退出機制之建置。

德國通過電力市場發展法和能源轉型數位化法以因應下階段

  德國聯邦議會通過電力市場發展法(Gesetze zur Weiterentwicklung des Strommarktes)和能源轉型的數位化法(Gesetze zur zur Digitalisierung der Energiewende)。   本次新制定之電力市場法,是90年代後德國電力市場重大發展。目的在於調適電力市場,以配合當今德國快速成長的再生能源發電比例。為使電力供應繼續保持合理價格和電力供應可靠安全,在確認未來電力市場發展繼續朝向增加越來越多風力發電和太陽能發電之路線的同時,預先架構法制環境,為將來配合運用發電端的彈性、需求端彈性與電力儲存技術,確定電力市場發展方向和框架條件。在上述等規範之下,電力交易商有義務,亦即售電者應該設法建構自身電量儲備作為因應,在電網需要時饋入電網,為供電安全提供必要準備。另外在注重必要容量儲備上之投資外,亦強調電力批發市場上的自由定價原則,維持整體市場所需容量在均衡、平衡之穩定電力供應狀態。   另外,能源轉型數位化法則是使電力部門成為創新之有效制度工具。蓋其作為基礎建設,使新創業模式,例如藉由與消費者持有之再生能源發電設備之連結,發展出新商業獲利模式。修法核心內容係引入智慧量測系統,功能在於作為安全的通訊平台,使電力供應系統能夠配合能源轉型發揮最大功用。   最後,為配合巴黎協定後德國環境政策,在遏止溫室效應氣體的實施具體作為,電力市場法一部份重要內容在於暫時停止褐煤電力電廠發電運轉。配合電網安定的調度需求,僅在指定時間內,使其成為電力安全預備,並最終不再使用褐煤發電,以實現到2020年德國在電力部門的氣候目標。   德國完成電力市場法,結束由“綠皮書”和“白皮書”開始的進程,與鄰國經過廣泛的公眾諮詢和協調會議之後,最終選擇電力市場2.0與市場自由定價的機制,而反對所謂的容量市場。決定性的因素在於,如此一來政策所需花費的成本較另一選項來得低,且更容易使德國融入歐洲電力單一市場架構。依據本法新創建的容量儲備,將與電力市場中其他電力嚴格區分,專門作為應對突發事件額外的安全網。   在「區域合作聯合聲明」中,德國經濟與能源部長於2015年6月8日與11鄰國商討後決定,保證在電力短缺和高電價時,德國側將提供電力的自由定價和跨境交易,如此一來可用更低成本以生產電力,德國和周邊國家的內部單一市場在此看到了巨大的經濟優勢。   與歐洲各國相較,德國在電力供應安全議題上處於領先地位。再加上新的電力市場法,預計未來幾年電力市場能夠達到持續健全發展之目標。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP