Uber所使用的移動定位軟體被控侵權

  運輸公司Uber在其行動應用程式(app)中使用的移動定位技術被控侵權。原告Fall Line專利有限公司於今(2017)年7月10日美國東德州聯邦地方法院泰勒分院向Uber提起專利侵權訴訟。系爭美國專利號9,454,748(以下簡稱’748專利)的權利範圍涵蓋一種收集特定定位資料及相容於各種裝置的軟體,從而不需要再為了各種裝置重新設計新軟體。

  Fall Line專利有限公司在訴狀中聲稱:「Fall Line專利有限公司是’748專利的專利權人,擁有所有實體權利。實體權利包括獨佔權及排他權,故Fall Line專利有限公司得以’748專利主張權利、對抗侵權者,對Uber的侵權行為提起訴訟。」Fall Line專利有限公司控訴Uber的行動應用程式可協助使用者以智慧型手機叫車,前往他們所在位置,侵害其’748專利。Uber的侵權行為已經造成Fall Line專利有限公司的損害,應對Fall Line專利有限公司給予適當補償,且補償金額不得低於合理權利金,及法院判決確定的利息及費用,另亦請求禁制令及陪審團審理。

   此外,根據一項美國地方法院資料庫的檢索結果顯示,Fall Line專利有限公司今年到目前為止已經提起五件專利侵權訴訟,其中包括對精品國際酒店集團(Choice International Hotel)的控訴,而本案已是Uber今年第三起被控專利侵權的案件。

「本文同步刊登於TIPS網站(https://www.tips.org.tw)」

相關連結
你可能會想參加
※ Uber所使用的移動定位軟體被控侵權, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7867&no=67&tp=1 (最後瀏覽日:2026/02/09)
引註此篇文章
你可能還會想看
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

印度民航局發布無人機規則草案

  印度民航局(Directorate General of Civil Aviation,以下簡稱DGCA)在禁止公眾使用無人機多年後,終於在2017年11月1日發布無人機使用規則(草案),並於網站上公開徵求意見。民航局部長P Ashok Gajapathi Raju表示,草案將於接下來的30日內,與所有利益相關者進行交流,一旦協商完成,將會確定無人機監管框架。預計今年12月底前完成訂定無人機使用管理規範,包含商業用途無人機。   根據規則草案,無人機依照最大起飛重量將其分為五類,分別為: 奈米(nano)無人機:重量小於250克; 微型(micro)無人機:重量在250克和2公斤之間; 迷你無人機(mini):重量介於2公斤至25公斤; 小型無人機:重量25公斤至150公斤; 大型無人機:重量150公斤以上。   除了飛行能力不超過50英尺高度的奈米無人機,所有無人機必須依照DGCA規定取得識別碼(Unique Identification Number)。針對2公斤以上的無人機需有無人機操作員許可證(Unmanned Aircraft Operator Permit),任何無人機的遙控飛行員必須年滿18歲,且需受過規定的培訓。   另,基於安全考量,草案規定禁止飛行無人機之區域,例如:機場範圍半徑5公里內、國際邊界50公里範圍內、戰略區域500公尺以內的國家重地、人口稠密地區、影響公共安全或正在進行緊急行動的地區、移動式平台(如:汽車、飛機或輪船)、及國家公園和野生動物保護區等生態敏感區域(eco-sensitive areas)等,違規者將依印度刑法之規定起訴。

強化政府橫向協調,提升AI治理—澳洲擬於2026年初設立AI安全研究所

澳洲政府於2025年11月25日宣布,將於2026年初設立AI安全研究所(AI Safety Institute)。澳洲AI安全研究所的設立目標,為提供相關的專業能力,以監管、測試與共享AI在技術、風險、危害層面的資訊。經由辨識潛在的風險,提供澳洲政府與人民必要的保護。AI安全研究所將以既有之法律與監管框架為基礎,因應AI風險,協助政府各部門調整相關規範。其主要業務如下: .協助政府掌握AI技術的發展趨勢,動態應對新興的風險與危害; .強化政府對先進AI技術發展及潛在影響的理解; .共享AI資訊與作為協調政府各部門的樞紐; .經由國家AI中心(National AI Centre,NAIC)等管道,提供事業、政府、公眾與AI相關的機會、風險和安全的指導; .協助澳洲履行國際AI安全協議的承諾。 AI安全研究所並為2025年12月2日,工業、科學與資源部(Department of Industry, Science and Resources)發布的國家AI計畫(National AI Plan,下稱澳洲AI計畫)中,保障應用AI安全性的關鍵項目。澳洲AI計畫指出,AI安全研究所將關注AI的上游風險(upstream AI risks),與下游危害(downstream AI harms)。所稱之上游風險,係指AI模型和系統的建構、訓練方式,與AI本身的能力,可能產生的疑慮。下游危害,則係指使用AI系統時,可能的實質影響。 AI安全研究所將支援與國際、政府各部門間之合作;並共享新興的AI技術能力,以及對AI上游風險的見解,發布安全研究成果,提供產業與學術界參考。AI安全研究所監測、分析與共享資訊,提出政府各部門,對AI下游危害,可採取的一致性應對建議。 綜上所述,澳洲政府提出國家AI計畫,於既有的法制體系,滾動調整相關規範,以應對AI風險。並成立AI安全研究所,追蹤國際AI發展脈動,及時提供澳洲政府應對建議,協調各部門採取一致性的行動。澳洲政府對新興AI技術,所採取策略的具體成效,仍有待觀察。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

3G執照屆期處理政策-國際實務與我國法制評析

  我國3G業務執照將於2018年底屆期,由於我國3G業務用戶數仍高,又我國第三代行動通信業務管理規則第48條第2項設有執照屆期後主管機關得為彈性處理之明文,故3G執照是否僅限於收回重新釋出頻譜,或是有其他更適宜之方式,實值進一步探討。 本研究首先借鏡國際上相關執照屆期重新釋出之執行措施與配套方案進行說明分析;其次,由市場面(我國行動通訊市場營運現況)與法制面(預算法、電信法及相關管理規則),探討我國3G執照屆期處理政策;最後提出相關建議,以供相關機關未來施政時參考。

TOP