於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。
EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面:
EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。
本文為「經濟部產業技術司科技專案成果」
世界智慧財產權組織(WIPO)已於2005年初正式宣告收到第一百萬件國際專利申請,並向全世界的創新者表示敬意。國際專利的申請係規範於〔專利合作條約〕(PCT),WIPO總幹事卡米爾‧伊德里斯博士對PCT創建26年歷史上的這一里程碑表示技術進步的步伐在大大加快,並反映了智慧財產權制度對刺激技術發展和豐富公有知識領域所作出的貢獻。 PCT簡化了公司和發明者在多個國家獲得專利權的程序,且公司和發明者如以各自國家專利制度所規定的規則和條例辦理專利申請事宜,則有可能發生喪失專利權的情況。 PCT體系的成員包括美國、日本、德國、英國和法國等先進發展國家,惟部份發展中國家所提出的國際專利申請量也正持續快速增加,表現最為突出的是印度與韓國,這兩個國家在2003年的國際專利均呈現倍數成長的趨勢。
英國通過《大英能源法》,設立國營大英能源公司推動淨零與能源安全面對能源轉型與全球淨零排放目標挑戰,英國於2025年5月15日通過《大英能源法》(Great British Energy Act 2025),法規授權內閣大臣(Secretary of State)指定一間由王室全資持有且依《2006年公司法》(Companies Act 2006)設立之股份有限公司為「大英能源公司」(Great British Energy, GBE)。 根據法規,GBE核心任務包括:推動潔淨能源發展、改善能源效率、降低碳排放、確保能源供應安全,並促進公平供應鏈(包含防止奴役與人口販運),GBE經營模式強調地方參與,須透過具社會效益之專案推動轉型工作。 為支持其營運,法規授權內閣大臣可對GBE提供各種形式的財務援助,包括補助、貸款、擔保、收購股份或資產等。此外,內閣大臣亦有權對GBE發布具拘束力之政策性指示(Directions),並需針對其營運擬定「策略優先事項」(strategic priorities),以成為GBE業務規劃之依據。惟上述優先事項不得涉蘇格蘭、威爾斯或北愛爾蘭議會專屬權限事項,除非經當地部門同意。 為確保公共資源使用之透明性,GBE必須每年向內閣大臣提交財報,內閣大臣再將財報提交國會。同時GBE須每五年接受一次獨立人士(independent person)的績效審查,獨立人士再將績效報告提交國會。法規亦要求GBE應持續檢討其業務對英國永續發展之影響,以確保符合國家長期發展方向。 本法適用於英格蘭、威爾斯、蘇格蘭及北愛爾蘭,並自2025年5月15日正式生效。
何謂「三螺旋理論」三螺旋理論,又稱三螺旋創新模型理論(Triple Helix Theory),主要研究大學、產業以及政府以知識經濟為背景之創新系統中之型態關係,由Etzknowitz與Leydesdorff於1995年首次提出。 因應知識經濟時代來臨,三螺旋理論著重於政府、學術界與產業界(即為產、官、學)三者在創新過程中互動關係的強化。該理論探討如何協調產業、政府、學界三方於知識運用和研發成果產出上的合作;當社會動態產生改變,過去單一強大的領域將不足以帶動創新活動,推動創新也非單一方的責任,此時產業、政府、學界的三螺旋互動便隨之發生:大學透過創新育成機構孕育企業創新,而產業則扮演將研發成果商業化之要角,政府則透過研發相關政策、計畫或法規制定,鼓勵企業和大學間研究發展合作。 有別於早期經濟合作暨發展組織(OECD)將「產業」作為主要研發創新主體,三螺旋理論更重視產業、政府、學界三大主體均衡發展,三方主體各自獨立發展,且同時與其他方維持相互協力合作,共同推進經濟與社會之創新發展。 在三螺旋理論下,產、官、學因其強弱不等的互動狀態,形成不同的動態模型(例如國家干預模型、自由放任模型、平衡配置模型等等),這些動態模型被認為是產生創新的主要動力來源,對未來新知識和科技創造與擴散的能力以及績效具有決定性的影響力。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」