歐盟對其成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析並公布2017年歐洲創新計分板報告

  於2017年6月20日,歐盟對於歐盟成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析,並發布2017年度歐洲創新記分板(European Innovation Scoreboard, EIS)年度報告。它涵蓋歐盟成員國以及冰島、以色列、前南斯拉夫的馬其頓共和國、挪威、塞爾維亞、瑞士、土耳其和烏克蘭。在全球少數指標中,EIS也對澳大利亞、巴西、加拿大、中國、印度、日本、俄羅斯、南非、韓國及美國進行了評估。

  EIS 2017排名與以前的版本不同,EIS 2017的測量框架由27個指標組成,區分4個主要類別的10個創新層面:

  1. 政策框架是創新績效的主要驅動力,涵蓋3個創新層面:人力資源、有吸引力的研究體系及創新環境。
  2. 投資包括公共及私人投資研究與創新,區分外部融資支持及內部資源投資。
  3. 創新活動吸取公司層面的創新工作,涵蓋3個方面:創新者、中間者及智慧財產權。
  4. 創新如何轉化為整體經濟效益之影響力:就業影響及銷售效應。

  EIS顯示歐盟的創新績效繼續增長,特別是由於人力資源的改善、創新型環境、自有資源投資以及有吸引力的研究體系。而瑞典仍然是歐盟創新領導者,其次是丹麥、芬蘭、荷蘭、英國以及德國,創新指數比歐盟平均值高出百分之二十。立陶宛、馬爾他共和國、英國、荷蘭以及奧地利則是增長速度最快的創新者。在全球創新比較中,歐盟僅次於加拿大及美國,但韓國及日本正急起直追,而中國在國際競爭中是發展最快的國家。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟對其成員國、其他歐洲國家以及區域鄰國的創新績效進行比較分析並公布2017年歐洲創新計分板報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7868&no=67&tp=1 (最後瀏覽日:2026/02/01)
引註此篇文章
你可能還會想看
歐盟個資保護委員會公布GDPR裁罰金額計算指引

歐盟個人資料保護委員會 (European Data Protection Board, EDPB)在徵詢公眾意見後,於今(2023)年5月24日通過了「歐盟一般資料保護規則行政裁罰計算指引04/2022」(Guidelines 04/2022 on the calculation of administrative fines under the GDPR)。此一指引,旨在協調各國資料保護主管機關(Data Protection Authorities, DPAs)計算行政罰鍰的方法,以及建立計算《歐盟一般資料保護規則》(General Data Protection Regulation, GDPR )裁罰金額的「起點」(Starting Point)。 時值我國於今(2023)年5月29日甫通過《個人資料保護法》之修法,將違反安全措施義務的行為提高裁罰數額至最高1500萬,金額之提高更需要一個明確且透明的定裁罰基準,因此該指引所揭露的裁罰計算步驟值得我國參考。指引分為五個步驟,說明如下: 1.確定案件中違反GDPR行為的行為數以及各行為最高的裁罰數額。如控管者或處理者以數個行為違反GDPR時,應分別裁罰;而如以一行為因故意或過失違反數GDPR規定者,罰鍰總額不得超過最嚴重違規情事所定之數額(指引第三章)。 2.確定計算裁罰金額的起點。EDPB將違反GDPR行為嚴重程度分為低度、中度與高度三個不同的級別,並界定不同級別的起算金額範圍,個案依照違反GDPR行為嚴重程度決定金額範圍後,尚需考量企業的營業額度以定其確切金額作為裁罰數額起點(指引第四章)。 3.控管者/處理者行為對金額的加重或減輕。評估控管者/處理者過去或現在相關行為的作為加重或減輕的因素而相應調整罰鍰金額(指引第五章)。 4.針對各違反行為,參照GPDR第83條第4項至第6項確定行政裁罰上限。GDPR並沒有對具體的違反行為設定固定的罰款金額,而是對不同違反行為規範了裁罰最高額度上限,EDPB提醒,適用第三步驟或下述第五步驟所增加的額度不能超過GDPR第83條第4至第6項度對不同違反行為所訂的最高額度限制(指引第六章)。 5.有效性、嚇阻性與比例原則的考量。個資保護主管機關應針對具體個案情況量以裁罰,必須分析計算出的最終額度是否有效、是否發揮嚇阻以及是否符合比例原則,而予以相應調整裁罰額度,而如果有客觀證據表明裁罰金額可能危及企業的生存,可以考慮依據成員國法律減輕裁罰金額(指引第七章)。 EDPB重申其將不斷審查這些步驟與方法,其亦提醒上述所有步驟必須牢記,罰鍰並非簡單數學計算,裁罰金額的關鍵因素應取決具體個案實際情況。

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

Burberry 已向TJX Cos提出商標侵權訴訟

  Burberry是一家專門生產奢華服裝、圍巾、提袋等產品之品牌公司,於今年3月3日在Manhattan聯邦法院向以低價經營為主的TJX Cos公司提起商標侵權訴訟,因旗下TJ Maxx、Marshalls及HomeGoods商店,販售許多各式各樣之仿冒品。   Burberry以稱為” Burberry Check (Burberry格紋)”聞名,其格紋是以十字交叉設計並使用駝色、紅色、黑色及白色作為商標。並聲明其商標是著名的,且象徵Burberry是專門生產及提供高品質奢華產品的公司。此一訴訟指控TJX Cos其零售商於過去四年販售許多商標侵權之產品,如:外套、相框、polo衫、圍巾及旅行箱等。更指出TJX Cos是以試圖”吸引Burberry之目標客戶,進而造成Burberry的損失作為其獲利的來源。”然而TJX Cos之發言人Sherry Lang發表聲明,針對Burberry的指控表示”遺憾”且”並非意圖欺騙任何人,使其相信他們所購買的是Burberry的產品”。現已聯繫此爭議中所販售相關產品之零售商。   目前Burberry正尋求終止此侵權產品之販售,銷毀未授權產品,並要求TJX Cos作改善廣告聲明、三倍損害賠償及其他許多矯正措施。   於Burberry提起訴訟的同一周內,以手提袋及公事包製造聞名之公司Coach也向低價折扣零售商Kmart Corp,提起類似之侵權訴訟。

歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後

  歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。   根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。

TOP