德國在2017年的3月通過了最新的無人機相關法規命令,亦包含傳統模型飛機的部分,並於2017年4月7日生效,新的修正重點如下:
綜合觀察可以發現,德國對於無人機的使用規範(或限制),可以歸結至三 方面,對於使用人的規範、無人機的大小以及使用地點的限制。
紐約州總檢察長Letitia James於2024年1月5日與健康照護服務業者Refuah Health Center, Inc.(下稱Refuah公司)達成和解,主因為該公司遭受勒索軟體攻擊(ransomware attack),約25萬紐約州民個資遭到洩漏。和解協議要求Refuah公司支付共計45 萬美元之民事懲罰金及費用(penalties and costs),且應投資 120 萬美元加強網路安全(cybersecurity)。 Refuah公司主要業務為經營三家醫療機構和五輛行動醫療車(mobile medical vans)。2021 年 5 月,Refuah公司遭到勒索軟體攻擊,網路攻擊者得以近用數千名病人的資料,取得了包含姓名、地址、電話號碼、社會保險號碼、駕照號碼、出生日期、金融帳號、醫療保險號碼等資料。 依據檢察長辦公室的調查顯示,攻擊者之所以得近用這些資料,原因為 Refuah公司未採取適當安全維護措施,包括:未停用不活躍之使用者帳號(inactive user accounts);未定期更換使用者帳號憑證(user account credentials);未限制員工僅得近用其業務所必需之資源和資料;未使用多重要素驗證(multi-factor authentication)以及未加密病人資料。 依據協議內容,Refuah公司同意投資 120 萬美元,用於開發和維護更強大的資訊安全計畫(information security programs),以更妥適地保護病人資料。該協議還要求Refuah公司應: 1.維護全面的資訊安全計畫,以保護消費者資料的安全性、機密性和完整性; 2.實施並持續更新消費者資料近用限制相關政策和程序; 3.遠端近用資源和資料應使用多重要素驗證; 4.定期更新近用資源和資料的憑證; 5.至少每半年進行一次稽核,確保使用者僅近用其業務所必需之資源和資料; 6.對所有儲存或傳輸的消費者資料進行加密; 7.實施控制措施,監控和記錄公司網路和系統的所有安全和操作活動;以及 8.制定、實施和持續更新全面的事故應變計畫。 Refuah公司還須向州政府支付共計45 萬美元之民事懲罰金及費用,其中 10 萬美元將在該公司投入 120 萬美元開發和維護其資訊安全計畫後,得暫緩支付。
澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).
美國NIST發布更新《網路安全資源指南》提升醫療領域的網路安全及隱私風險管理美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)於2022年7月21日發布更新《網路安全資源指南》(A Cybersecurity Resource Guide, NIST SP 800-66r2 ipd)。本指南源自於1996年美國《健康保險流通與責任法》(Health Insurance Portability and Accountability Act, HIPAA)旨在避免未經患者同意或不知情下揭露患者之敏感健康資料,並側重於保護由健康照護組織所建立、接收、維護或傳輸之受保護電子健康資訊(electronic protected health information, ePHI),包括就診紀錄、疫苗接種紀錄、處方箋、實驗室結果等患者資料之機密性、完整性及可用性。其適用對象包含健康照護提供者(Covered Healthcare Providers)、使用電子方式傳送任何健康資料的醫療計畫(Health Plans)、健康照護資料交換機構(Healthcare Clearinghouses)及為協助上述對象提供健康照護服務之業務夥伴(Business Associate)均應遵守。 本指南最初於2005年發布並經2008年修訂(NIST SP 800-66r1 ipd),而本次更新主要為整合其他網路安全相關指南,使本指南與《網路安全框架》(Cybersecurity Framework, NIST SP 800-53)之控制措施等規範保持一致性。具體更新重點包括:(1)簡要概述HIPAA安全規則;(2)為受監管實體在ePHI風險評估與管理上提供指導;(3)確定受監管實體可能考慮作為資訊安全計畫的一部分所實施的典型活動;(4)列出受監管實體在實施HIPAA安全規則之注意事項及其他可用資源,如操作模板、工具等。特別在本指南第三章風險評估與第四章風險管理提供組織處理之流程及控制措施,包括安全管理流程、指定安全責任、員工安全、資訊近用管理、安全意識與培訓、應變計畫、評估及業務夥伴契約等。而在管理方面包括設施權限控管、工作站使用及安全、設備媒體控制;技術方面則包含近用與審計控管、完整性、個人或實體身分驗證及傳輸安全。上述組織要求得由政策、程序規範、業務夥伴契約、團體健康計畫所組成,以助於改善醫療領域的網路安全及隱私保護風險管理。預計本指南更新將徵求公眾意見至2022年9月21日止。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。