德國在2017年的3月通過了最新的無人機相關法規命令,亦包含傳統模型飛機的部分,並於2017年4月7日生效,新的修正重點如下:
綜合觀察可以發現,德國對於無人機的使用規範(或限制),可以歸結至三 方面,對於使用人的規範、無人機的大小以及使用地點的限制。
有鑑於網路使用人口中,不同使用者族群所消耗的傳輸量比例相差懸殊,美國寬頻業者於近來積極推動網路傳輸流量上限管理計畫,且繼Comcast與Time Warner等業者的初步嘗試後,美國最重要的網路服務提供者—AT&T,也宣布將開始進行客戶網路流量管理計畫。 這項嘗試計畫將以限制新的DSL用戶為起點,其所規定的每月下載與上傳流量上限,係依據客戶申請的寬頻方案有所不同,分別被限制在20G至150G (gigabytes)不定。超過的部分則將持續向使用者警告兩個月後,依每超過1G加收一美元的費用,向使用者收費。 至於提出此項管理方案的理由,據AT&T發言人表示,是因為網路頻寬的使用分佈過於不平均,高達46%的頻寬是5%的使用者在使用,而21%的頻寬更是只為極少數的1%用戶所使用,顯然太過集中。根據AT&T的傳輸上限規定,購買傳輸速度3M (megabits)的寬頻使用者,日後每月的傳輸量上限是60G,這大約等於是下載30部DVD畫質電影的傳輸量。 不過,也有分析師指出,現階段欲全面滿足使用者的頻寬需求,對網路服務提供者而言尚非極大的財務負擔,且管制流量上限的作法,可能對既有以「吃到飽」費率方案為基礎,所發展出來的網路應用服務模式,造成極大的衝擊,此亦也可能引發後續有關網路中立性的政策辯論。
歐盟發布人工智慧法、醫療器材法與體外診斷醫療器材法協同適用問答集歐盟《人工智慧法》(Artificial Intelligence Act, AIA)自2024年8月1日正式生效,與現行的《醫療器材法》(Medical Devices Regulation, MDR)及《體外診斷醫療器材法》(In Vitro Diagnostic Medical Devices Regulation, IVDR)高度重疊,特別是針對用於醫療目的之人工智慧系統(Medical Device AI, MDAI)。為釐清三法協同適用原則,歐盟人工智慧委員會(Artificial Intelligence Board, AIB)與醫療器材協調小組(Medical Device Coordination Group, MDCG)於2025年6月19日聯合發布常見問答集(Frequently Asked Question, FAQ),系統性說明合規原則與實務操作方式,涵蓋MDAI分類、管理系統、資料治理、技術文件、透明度與人為監督、臨床與性能驗證、合規評鑑、變更管理、上市後監測、資安與人員訓練等面向。 過去,MDR、IVDR與AIA雖各自對MDAI有所規範,但始終缺乏明確的協同適用指引,導致製造商、監管機關與醫療機構在實務操作上常面臨混淆與困難。本次發布的指引透過36題問答,系統性釐清三法在高風險MDAI適用上的關聯,重點涵蓋產品分類原則、合規評鑑流程以及技術文件準備要點,具高度實務參考價值。此外,傳統醫療器材的上市後監測,難以有效因應AI系統持續學習所帶來的風險。AIA因此要求高風險MDAI建立強化的上市後監控系統,並評估AI系統與其他系統交互作用可能產生的影響。 整體而言,該指引的發布不再僅限於MDAI技術層面的合規審查,而是進一步擴展至資料正當性、系統可控性、使用者能力與整體風險治理等層面,體現歐盟對AI倫理、透明與責任的制度化落實。此文件亦為歐盟首次系統性整合AI與醫療器材監管原則,預期將成為MDAI產品研發與上市的重要參考依據。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)
日本發布新版之農業資料利用推動報告,並透過資料交換及利用機制確保資料共享及協作日本農林水產省於2025年9月在智慧農業網站上發布新版之農業資料利用推動(下稱報告),其內容包含2025年通過閣議決定之食材、農業、農村基本計畫,並指出為確保農業數位資料與人工智慧(下稱AI)之間的串聯應用,農業資料合作基礎平台(下稱WAGRI)的建立與資料協作、共有、提供功能是其不可或缺的要素。 報告指出,透過各式農業數位資料的蒐集與整合,諸如過往作物收成量資料、市場價格資料、土壤資料、農地資料、氣象資料等,並經過統合及分析後,可以達到提升作業效率及收益、減少勞動作業時間與器材損耗,以及降低環境負荷之效果。截至2025年9月為止,WAGRI網站上已提供高達223種農業數位資料相關的API,供農業領域從業者介接運用,並作為未來開發農業領域基礎AI模型的前置準備。 此外,報告亦指出WAGRI已於日本全國範圍內蒐集大量的農業數位資料,用以開發農業領域之基礎AI模型,並預計於2026年在WAGRI網站上提供基礎AI模型服務。未來農業領域從業者可透過WAGRI網站提供之基礎AI模型服務,輔以自身之農業數位資料,建立符合自身農業場域特性之特化型AI模型。 然而,報告亦指出不論是農業數位資料的API介接運用,還是將農業數位資料用以開發基礎AI模型,農業數位資料之法制配套仍需整備。因此,除了資料權屬等關係釐清外,報告特別提出於AI開發應用、資料共享之模式下,尚須建立「涵蓋資料整體生命週期之資料交換及利用機制」,包含資料對外公開之選擇權、資料提供之事前同意權、資料安全管理對策,以及資料刪除請求權等範圍,以確保農業數位資料在利用前的安心共享與協作。 我國政府如欲於農業領域發展基本AI模型,除應於全國範圍內蒐集大量之農業領域數位資料外,亦應建立串聯資料整體生命週期之資料交換及利用機制,以降低農業數位資料之間的協作風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
學名藥品侵權 v. 競爭法中的假訴訟美國聯邦第三巡迴上訴法院於2014年時對於Takeda Pharmaceutical Co.(Takeda) v. Zydus Pharmaceuticals (Zydus) 一案判定:學名藥廠Zydus並無構成專利侵權,且原廠Takeda於本案的系爭專利並無失效[1]。惟本案的學名藥廠Zydus隨後向Takeda提起另一訴訟:Zydus聲稱該案的專利侵權訴訟是假訴訟(sham litigation)[2],亦即,Takeda 提起專利侵權訴訟之本意在於阻卻Zydus的學名藥參與市場競爭,而非旨在確認侵權事實或請求賠償。Takeda隨後提起反訴,主張美國The 1984 Hatch-Waxman Act[3]已明確賦予專利權人提起專利權侵權訴訟之權利,既有訴訟權,便無假訴訟之虞。 美國聯邦貿易委員會(Federal Trade Commission, FTC)對於上述兩藥廠間的假訴訟爭議,在2018年6月時發布法庭之友意見書(amicus brief [4]),以5-0決議呼籲本案法院應對於假訴訟爭議進行審查。本意見書指出,The 1984 Hatch-Waxman Act、競爭法、專利法或其他醫藥法規,無任何關於藥品侵權訴訟得以免除假訴訟審查之規定。再者,FTC實有權限依據豁免原則(Noerr-Pennington Doctrine)及相關判例,就主觀與客觀要件,審查相關爭訟是否為假訴訟:(1)該爭訟程序客觀上是否無理由,提出爭訟者現實上是否不期待勝訴;(2)該爭訟程序當事人主觀上是否有意利用程序,直接地干擾競爭對手的商業關係。本意見書並進一步說明,原廠Takeda所提專利權侵權訴訟,即使學名藥廠Zydus之專利侵權事實為真,惟只要Takeda行為符合假訴訟主、客觀要件,仍有可能構成假訴訟;亦即,「是否侵權」與「是否該當假訴訟」兩者之判斷是分開的。 [1] 原廠藥之英文為branded drug,指一個藥廠自研發、生產、上市,而握有專利權之藥品,通常具有強大品牌名聲、價格通常也高;學名藥廠則是待原廠藥專利權屆滿後、或以侵權之方式,而製造與原廠藥相同或相似之藥物,學名藥價格相對較低,但在安全與效用上時常有疑慮。 [2] 美國競爭法豁免原則(Noerr Pennington Doctrine)下,私人爭訟方或單位,運用爭訟或政府程序等以促進法案的通過、增進法律執行等,免除競爭法之相關責任。但該責任免除之原則下,當事人若僅是利用政府或爭訟程序作為有害市場競爭的工具,並無合法地尋求正面結果; 或該爭訟僅是純粹的假訴訟,以干擾正當商業關係或市場競爭時,無該原則免除競爭法相關責任的適用,亦即,仍須受到競爭法的檢視與求責可能。 [3] The 1984 Hatch-Waxman Act 旨在促進學名藥參進市場競爭、兼顧學名藥與原廠藥間的利益保護,並明定原廠藥與學名藥廠均有權利提起專利權合法爭訟(validity),以避免學名藥進入市場的受阻、也欲杜絕學名藥廠進行藥品侵權行為。 [4] 此指法庭意見書,乃為了釐清法律爭議或協助解釋法律等所提之文書,供參考用、不具強制法律效力,我國翻譯則稱法庭之友。