本文為「經濟部產業技術司科技專案成果」
賽雷拉( Cel-era)公司創始人溫特克萊首度來台,他是四年前完成人類基因體解碼的靈魂人物,他建議可運用基因解碼技術,建立基因資料庫,解決台灣醫療資源浪費。 事實上,早在2004年2月行政院科技顧問組為追蹤研究國人常見疾病與基因之間的關係,宣布推動「台灣疾病與基因資料庫」建置計畫。希望透過該基因資料庫的建立,確實掌握國人致病基因,奠定基因治療基礎,除了有效節省醫療資源浪費,更可鎖定特有亞洲疾病為研發重心,作為生技產業發展的優勢利基。台灣人口數約有二仟多萬,且具有完整健全的全民健保及戶籍資料,再加上台灣生物科技產業技術的蓬勃發展,想要建立大型的基因資料庫技術性應相當可行。國外有冰島和英國等多國發展之經驗可參考。 由於涉及人權自主、個人隱私、安全保密、社會倫理、研究成果的利益分享、以及由誰來擔任執行單位等方面的爭議,加上目前國內法令規範不足,既有相關法令多為位階較低的指導性公告,確實有必要建置相關配套制度及法律,以協助該計劃落實執行與發展。
美國傳播通訊委員會發動推展國家寬頻計劃美國聯邦通訊傳播委員會(FCC)於2009年04月08日宣佈開始推展國家寬頻計劃進程,以達到能使每位美國民眾均有能力負擔與使用寬頻網路的服務。 此項引發廣大爭議的寬頻計畫係植基於2009年的「美國經濟復甦與再投資法」(American Recovery and Reinvestment Act of 2009)─即眾所周知的「振興經濟方案」。在此之前,FCC曾於2007年04月根據1996年電信法第706節發佈法規制定提議意見調查書(NOI,FCC 09-31),希望蒐集各界對於以下四個問題的看法:1.) 何為「先進通訊服務」?;2.) 如何促進美國民眾先進通訊的使用;3.) 目前推動是否合理合時?4.) 何種方式可以更有效推動先進通訊服務發展。 此次,該計畫將獲得72億美元以實現下列要求:1.) 以最有效能與效率的方式確保全美民眾能接近使用寬頻網路服務;2.) 提出人民有能力負擔與寬頻服務最大效用化的策略;3.) 評估目前寬頻推展現狀(包括其他相關的計畫);4.) 如何運用寬頻網路服務以提升消費者權益、公民參與、公眾安全、社區發展、健康照護、能源獨立效率性、教育、員工訓練、私部門投資、企業活動、創造工作機會與經濟成長。 參眾兩院要求FCC必須在2010年02月17日前,將該最終方案遞交眾議院與參議院相關委員會審議。但是,有論者認為目前FCC的計畫與方向並未考量到終端使用者真正需求與如何使用該等科技;同時,歐巴馬政府針對寬頻網路議題未提供足夠的公民思辨機會,最後恐將事倍功半。
資通安全法律案例宣導彙編 第1輯 英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。