歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱

  成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素:

  1. 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。
  2. 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。
  3. 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。
  4. 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。
  5. 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。
  6. 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。

本文為「經濟部產業技術司科技專案成果」

※ 歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7893&no=645&tp=5 (最後瀏覽日:2026/02/17)
引註此篇文章
你可能還會想看
從歐洲法院實務看資料保護在智慧聯網時代下發展-以資料保存指令無效案和西班牙Google案為例

合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。   在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。   英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。   技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

印度電子及資訊科技部公告封鎖數款由中國企業開發之應用程式

  2020年6月、9月及11月,印度電子及資訊科技部(Ministry of Electronics and Information Technology, MeitY)分別發布三項公告,內容為封鎖數款具資安風險之應用程式,並直接列出名單,總數一共高達220款。三項公告分別如下: 政府封鎖59款有害印度主權之完整性、防禦力、國家安全及公共利益的手機應用程式(Government Bans 59 mobile apps which are prejudicial to sovereignty and integrity of India, defence of India, security of state and public order)。 政府封鎖118款有害印度主權之完整性、防禦力、國家安全和公共利益的手機應用程式(Government Blocks 118 Mobile Apps Which are Prejudicial to Sovereignty and Integrity of India, Defence of India, Security of State and Public Order)。 政府禁止國內使用者使用43款手機應用程式(Government of India blocks 43 mobile apps from accessing by users in India)。   三項公告皆指出依照資訊技術法(Information Technology Act 2000)第69A條之規定,中央政府為保護印度主權之完整性、國家安全、公共利益而有必要,得透過命令封鎖、監視或解密由特定電腦資源(computer resource)產生、傳送、儲存或管理的資料。依照同法第2條第1項第k款,電腦資源係指電腦設備、電腦網路、軟體或應用程式。   電子及資訊科技部進一步表示,經民眾檢舉後調查發現,在手機Android及iOS系統之應用程式商店中,有許多應用程式未經使用者授權就存取其重要資料,並傳輸到印度境外的伺服器,不僅對印度人民隱私造成威脅,更損害印度國家安全與公共利益。有鑑於此,電子及資訊科技部決定封鎖此類具資安風險之應用程式,將名單中所列應用程式自應用程式商店中下架,名單中包括TikTok、WeChat、淘寶、支付寶、微博等應用程式。由於名單中大多數皆屬中國企業開發之應用程式,外界普遍認為是今年6月中印軍隊於邊界西段加勒萬河谷(Galwan Valley)發生衝突,因此印度透過封鎖中國資通訊服務之手段以牽制對方,預計此舉將導致兩國關係更加緊張。

TOP