新加坡科技與研究局(Agency for Science, Technology and Research)於2017年7月26日提出未來工廠(Toward the factories of the future)概念及相關研究方向,自動化(Automation)、機器人(robotics)、先進電腦輔助設計(advanced computer-aided design)、感測和診斷技術(sensing and diagnostic technologies)將徹底改變現代工廠,可製造的產品範圍廣泛,從微型車乃至於飛機皆可生產。積層製造(Additive Manufacturing),又稱3D列印(3D printing),可使用單一的高科技生產線來創造許多不同的產品項目,而不需要傳統大規模生產的設計限制和成本,伴隨未來高效能電腦和感測技術之進步,積層製造速度也會隨之加快。而智慧工廠(smart factories)將與物聯網(IOT)、雲端計算(cloud computing)、先進機器人(advanced robotics)、即時分析(real-time analytics)與機器學習(machine learning)等技術與積層製造技術結合,將大為提升生產速度及產量。
為加速及改善積層製造的製程,最重要的方法之一,是使用材料物理學的基本原理來模擬製造過程,而近期更引進跨學科之研究,「模擬」最終產品化學成分和機械性能的微觀結構。因積層製造是一個複雜又困難的過程,透過變化既有規則之模擬(Game-Changing simulations),若建立完成模型且模擬成功,將成為積層製造的殺手級技術。在未來的五到十年,我們將看到更多的零件從積層製造技術生產出來,而且這種技術有機會成為未來工廠的生產基礎。由於現行材料及製造流程與機器必須配合一致,些許的差異皆會生產出不同品質之產品,故未來積層製造工廠的結果穩定重現性(repeatability)和標準化(standardization),將是產品商業化的主要障礙與挑戰。
本文為「經濟部產業技術司科技專案成果」
因應2021年10 月日本政府修訂的全球變暖對策計劃,訂立森林在2030年要達到3800萬噸的二氧化碳吸收量之目標,因此日本林業廳公布了「如何計算森林吸收的二氧化碳量」之方法,進一步展現森林吸收二氧化碳的功能,以提高民間企業和地方公共團體等公眾參與的植林、造林活動的意願,以及促進公眾對森林維護在全球暖化對策中的重要性認識。分別為下列三種計算方式: 森林一年吸收二氧化碳量的簡單計算方法 每1公頃森林一年吸收二氧化碳量=每公頃森林每年樹幹生長體積(m3/年·ha)×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 林地復育增加森林吸收二氧化碳量的計算方法 因林地復育增加森林吸收二氧化碳量=有進行林地復育和沒有進行林地復育的森林估計累積量之差×膨脹係數×(1+地下比率)×容積密度(t/m3)×碳含量×二氧化碳換算係數 因種植森林土壤所維持之二氧化碳含量計算方法 因種植森林土壤所維持之二氧化碳含量=土壤平均碳累積量(tC/ha)×種植森林所保持的土壤量相關係數×種植森林之面積(公頃)×種植森林之年數×土壤流出時排放到大氣中的二氧化碳排放係數×二氧化碳換算係數 此份公告規範了日本未來如何計算森林吸收的二氧化碳量之方式,目前我國依據「國際氣候變遷專家委員會(IPCC)」建議公式,推估森林資源林木之碳貯存量,推估結果臺灣地區森林林木之碳貯存量約有754百萬公噸二氧化碳,每公頃平均碳存量約為每公頃378 公噸二氧化碳,對此亦可參考上述公式推算,以更了解我國的森林與碳管理關係。
美國情報體系發布「情報體系運用人工智慧倫理架構」美國國家情報體系(United States Intelligence Community)係於1981年依據行政命令第12333號(Executive Order 12333)所建立,其任務為蒐集、分析與提供外國情報與反情報資訊美國國家領導人,服務對象包含美國總統、執法單位以及軍事單位。其於2020年6月提出「情報體系人工智慧倫理架構」(Artificial Intelligence Ethics Framework for the Intelligence Community),為人工智慧系統與訓練資料、測試資料之採購、設計、研發、使用、保護、消費與管理提出指引,並指出人工智慧之利用須遵從以下事項: 一、於經過潛在風險評估後,以適當且符合目的之方法利用; 二、人工智慧之使用應尊重個人權利與自由,且資料取得應合法且符合相關政策與法規之要求; 三、應於利用程序內結合人類判斷與建立問責機制,以因應AI產品之風險並確保其決策之適當性。 四、於不破壞其功能與實用性之前提下,盡可能確認、統計以及降低潛在之歧視問題。 五、AI進行測試時應同時考量其未來利用上可預見之風險。 六、持續維持AI模型之迭代(Iteration)、版本與改動之審查。 七、AI之建立目的、限制與設計之輸出項目,應文件化。 八、盡可能使用可解釋與可理解之方式,讓使用者、審查者與公眾理解為何AI會產出相關決策。 九、持續不定期檢測AI,以確保其符合當初建置之目的。 十、確認AI於產品循環中各階段之負責人,包含其維護相關紀錄之責任。
FCC第二號命令對我國必要轉播條款的啟示 美國FDA擬參考PDUFA,向學名藥產業收費美國FDA官員新近對外表示,該局正考慮參考處方藥使用者付費法(Prescription Drug User Fee Act, PDUFA),研擬一套向學名藥產業收費的機制。PDUFA是美國國會在1992年所通過的法案,依據該法,生技及製藥產業向FDA支付「使用費」(user fees),FDA承諾每年達到一定的審查“業績”(performance standards),以加速新藥上市申請。 目前PDUFA的適用對象並不包括學名藥廠,鑑於歷年來學名藥上市申請案件大幅攀升,以FDA既有之人力與資源,早已無法負擔如此大量的上市審查工作。另若考量諸多知名原廠藥之專利將在未來幾年陸續到期,如不增加新的資源,FDA的學名藥審查負擔將會持續惡化。使用者付費機制若能擴及學名藥,則FDA將可獲得額外資源,用來聘用更多的專業審查人員、取得更為豐富之資料,以保障病患之權益,使其可儘速近用便宜且有效之學名藥。 雖然PDUFA在改善新藥上市審查效率方面,確實達到了政府與產業界雙贏、民眾受惠的目的,不過這套制度要擴及學名藥產業,卻遭受到學名藥業界的反對。其中最主要的疑慮來自於,在現今的審查制度設計下,提高學名藥上市審查效率的目標是否能透過使用者付費達成,殊值懷疑。蓋根據美國法律規定,學名藥廠若以原開發藥廠之專利無效為理由申請上市,應將申請上市之事實通知原開發藥廠,一旦原開發藥廠認為學名藥廠侵害其專利並提起訴訟,FDA即必須停止學名藥之上市審查。據此,學名藥業界認為,在上述問題解決前,即使PDUFA擴及適用到學名藥產業,也並未能有助於改善學名藥上市審查之效率。 總而言之,PDUFA若欲擴及學名藥產業,仍需釐清前揭疑慮並有待國會立法通過,不過,一旦使用者付費機制擴及適用於學名藥產業,則學名藥廠之藥物開發成本將會提高,我國學名藥廠如欲經營美國市場,值得注意其發展。