今(2018)年2月,一家成立於2013年、位於美國維吉尼亞州的雲端策略服務公司REAN Cloud Llc.以其他交易(Other Transaction, OT)模式獲得了美國國防部(Department of Defense)5年合計9.5億美金的合約,讓OT自2016年10 U.S. Code §2371b正式生效進一步確認美國國防部針對原型(Prototype)及其後續之產品開發適用OT以來[1],再次引起討論。 OT源於冷戰時期的美國,主要用於讓聯邦政府部門取得尖端國防技術的研究與發展(Research and Development, R & D)成果和原型。OT並非傳統之契約(contract)、授權書(grant)或合作協議(cooperative agreement),且法並無明確定義OT究竟實質內容為何。OT不受聯邦併購規則(Federal Acquisition Regulation, FAR)所規範,更接近一般私人商業契約,因此具備極大的合作彈性,可大幅度縮短私部門與政府合作常碰到的冗長時程。由於OT快速、彈性的這兩項特質,近年來應用於國防以外之新創或尖端科技之公私合作亦逐漸普遍。 然OT雖然簡化了政府採購的時程與限制,但同時也減少了問責可能性和透明度,因此目前只限具備美國國會授予其他交易授權(Other Transaction Authority, OTA)的聯邦政府機構得以使用OT。在美國計有太空總署(NASA)、美國國防部、美國聯邦航空總署(Federal Aviation Administration)、美國運輸部(Department of Transportation)、國土安全部(Department of Homeland Security)、運輸安全管理局(Transportation Security Administration)、衛生與公共服務部(Department of Health and Human Services)、美國能源部(Department of Energy)獲得國會授予OTA,其餘未獲OTA之政府部門僅得以在聯邦預算管理局(Office of Management and Budget)主任授權下有條件地使用OT。 尖端技術的R&D在不同領域皆有其特殊性,難以一體適用FAR,是以OT在實務運作上為兼顧持有尖端技術的公司重視速度和營業秘密之特質與採購之公平性,其運作模式通常為:聯邦政府成立某種技術領域的OT聯盟(consortium),私部門的潛在締約者可以申請加入,繳交會費並同意該聯盟的約定條款。聯盟之約定條款通常較政府採購契約來的有彈性,例如智慧財產權的歸屬是以個案個別約定。擁有OTA之政府機關嗣後可向聯盟成員徵求產品或服務白皮書,之後再從中挑選優秀者進一步繳交更詳細的產品或服務計畫書,最終經由聯盟管理機構(consortium management organization)挑選出最適者。 OT與OT聯盟的運作模式,為公私合作提供極大的法律彈性,且非常迅速。平均而言,從政府徵求白皮書到成功找到最適者,不過兩個月時間。時間與彈性乃是新創企業或尖端技術持有者與政府合作時最有疑慮之處,OT可以解決此一問題。然需注意OT在適用上仍存在諸多挑戰,例如成效難以評估、較不透明導致監督困難、智慧財產權歸屬爭議等,有待克服。 [1] 美國國防部在此前乃是遵循Section 845 of the National Defense Authorization Act(NDAA) for Fiscal Year(FY) 1994, Public Law 103-160適用OT。
Google數位圖書館計劃面臨著作權法爭議全球最大搜索引擎 Google公司於去年12月中宣布,已與美國紐約公共圖書館以及哈佛大學、史丹福大學、密西根大學、牛津大學合作,將數百萬冊藏書數位化讓網友免費瀏覽。此一計畫預計花十年時間建構,在2015年啟動,經費約估1億5000萬到2億美元之間 (The Google Print Program)。雖然此一構想極具創意,但是由於將館藏圖書數位化牽涉著作權爭議,因此由125家非營利學術出版機構組成的美國大學出版協會(AAUP)已針對若干疑點去函,希望Google能釐清著作權法上之疑慮,以利整體計劃之推動。 AAUP所持最重要依據係美國著作權法第107條有關合理使用之規定。AAUP質疑,以Google如此大規模,就圖書內容性質不加以區分,全面性的圖書數位化工程,恐怕無法符合著作權法所訂出的合理使用標準。蓋著作權法有關是否符合合理使用之界定標準,是以事實情況及個案之判別方式為主,故無法想像Google如何在未進行個別之判斷前,便能夠概括性的依此而主張其享有合法權利。事實上,Google之主張與法院實務界之認知存在極大落差。 此外, Google的數位圖書館計畫在許多細部執行事項上,仍存有許多疑點,導致原先欲加入的AAUP會員,無法確保圖書內容完成數位化後,對於以銷售書籍及授權為主要營收來源之出版社,恐會產生造成市場排擠效果之憂慮。 藉由數位技術雖然可以挑戰人類夢想的極限,但過程中涉及的法律層面問題,卻相當程度羈絆了夢想前進的速度。 Google的數位圖書館計劃再次印證了新興技術與現行法規不協調的窘況。就現有事實資料以觀,Google若未能與學術出版商妥善安排著作權引發之爭議,此一計畫未來是否能順利執行,恐怕存有極大疑問。
瑞士洛桑管理學院發布2020世界競爭力評比報告瑞士洛桑管理學院(International Institute for Management Development, IMD)於2020年6月發布2020世界競爭力評比報告(IMD’s 2020 World Competitiveness Ranking 2020 results)。此份報告共評比 63 個經濟體,全球競爭力前5名依序為新加坡、丹麥、瑞士、荷蘭與香港;其他重要經濟體之排名包含加拿大為第8、美國第10、臺灣第11、中國第20、南韓第23與日本第34。 2020世界競爭力評比以有「經濟表現」(Economic Performance)、「政府效能」(Government efficiency)「企業效能」(Government Efficiency)和「基礎建設」(Infrastructure)四大評比指標,旗下再細分為340個子標,例如人均GDP、對外直接投資佔GDP比例、國際貿易、國際投資、財政、勞動力市場、顧客滿意度受企業重視程度、健康與環境基礎建設、研發人力比例、研發總支出占GDP比例等。此次評比中,可以看出小型經濟體(如新加坡、香港、丹麥等)因容易凝聚社會共識,表現較為優異。而排名退步的國家如中國和美國,乃因兩國之間貿易戰損害經濟表現(美國從2019年第3掉至今年第10,中國自14掉至20)。香港亦從2019年的第2排到第5,其經濟表現下降乃因社會動盪以及中國貿易戰影響。 我國在此次評比中表現優異,綜合排名第11名,較2019年上升 5 名;且我國在亞太地區中高居第 3名,僅次於新加坡和香港,為 2016 年以來最佳成績。評比指標之政府效能、企業效能、基礎建設排名均有進步,其中政府效能排名全球第9,首次進入世界前10名。
落實完善數位資料管理機制,有助於降低AI歧視及資料外洩風險落實完善數位資料管理機制, 有助於降低AI歧視及資料外洩風險 資訊工業策進會科技法律研究所 2023年07月07日 近年來,科技快速發展,AI(人工智慧)等技術日新月異,在公私部門的應用日益廣泛,而且根據美國資訊科技研究與顧問公司Gartner在2023年5月發布的調查指出,隨著由OpenAI開發的ChatGPT取得成功,更促使各領域對於AI應用的高度重視與投入[1],與此同時,AI歧視及資料外洩等問題,亦成為社會各界的重大關切議題。 壹、事件摘要 目前AI科技發展已牽動全球經濟發展,根據麥肯錫公司近期發布的《生成式人工智慧的經濟潛力:下一個生產力前沿(The next productivity frontier)》研究報告指出,預測生成式AI(Generative AI)有望每年為全球經濟增加2.6兆至4.4兆的經濟價值[2]。同時在美國資訊科技研究與顧問公司Gartner對於超過2500名高階主管的調查中,45%受訪者認為ChatGPT問世,增加其對於AI的投資。而且68%受訪者認為AI的好處大於風險,僅有5%受訪者認為風險大於好處[3]。然而有社會輿論認為AI的判斷依賴訓練資料,將可能複製人類偏見,造成AI歧視問題,而且若程式碼有漏洞或帳戶被盜用時,亦會造成資料外洩問題。 貳、重點說明 首先,關於AI歧視問題,以金融領域為例,近期歐盟委員會副主席Margrethe Vestager強調若AI用於可能影響他人生計的關鍵決策時,如決定是否能取得貸款,應確保申請人不受性別或膚色等歧視[4],同時亦有論者認為若用於訓練AI的歷史資料,本身存有偏見問題,則可能導致系統自動拒絕向邊緣化族群貸款,在無形之中加劇,甚至永久化對於特定種族或性別的歧視[5]。 其次,關於資料外洩問題,資安公司Group-IB指出因目前在預設情況下,ChatGPT將保存使用者查詢及AI回應的訊息紀錄,若帳戶被盜,則可能洩露機敏資訊。據統計在2022年6月至2023年5月間,在亞太地區有近41000個帳戶被盜,而在中東和非洲地區有近25000個帳戶被盜,甚至在歐洲地區也有近17000個帳戶被盜[6]。另外在2023年3月時,ChatGPT除了發生部分用戶能夠檢視他人聊天紀錄標題的問題外,甚至發生個人資料外洩問題,即用戶可能知悉他人的姓名、電子郵件,付款地址,信用卡到期日及號碼末四碼等資料[7]。 參、事件評析 對於AI歧視及資料外洩等問題,應透過落實完善數位資料治理與管理機制,以降低問題發生的風險。首先,在收集訓練資料時,為篩選適合作為模型或演算法基礎的資料,應建立資料評估或審查機制,減少或避免使用有潛在歧視問題的資料,以確保分析結果之精確性。 其次,不論對於訓練資料、分析所得資料或用戶個人資料等,均應落實嚴謹的資料保密措施,避免資料外洩,如必須對於資料進行標示或分類,並依照不同標示或分類,評估及採取適當程度的保密措施。同時應對於資料進行格式轉換,以無法直接開啟的檔案格式進行留存,縱使未來可能不慎發生資料外洩,任意第三人仍難以直接開啟或解析資料內容。甚至在傳送帳戶登入訊息時,亦應採取適當加密傳送機制,避免遭他人竊取,盜取帳戶或個人資料。 財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境完善,於2021年7月發布「重要數位資料治理暨管理制度規範(Essential Data Governance and Management System,簡稱EDGS)」,完整涵蓋數位資料的生成、保護與維護,以及存證資訊的取得、維護與驗證的流程化管理機制,故對於不同公私部門的AI相關資料,均可參考EDGS,建立系統性數位資料管理機制或強化既有機制。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Gartner, Gartner Poll Finds 45% of Executives Say ChatGPT Has Prompted an Increase in AI Investment (May 3, 2023), https://www.gartner.com/en/newsroom/press-releases/2023-05-03-gartner-poll-finds-45-percent-of-executives-say-chatgpt-has-prompted-an-increase-in-ai-investment (last visited June 30, 2023). [2]McKinsey, The economic potential of generative AI: The next productivity frontier (June 14, 2023), https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#introduction (last visited June 30, 2023). [3]Gartner, supra note 1. [4]Zoe Kleinman, Philippa Wain & Ashleigh Swan, Using AI for loans and mortgages is big risk, warns EU boss (June 14, 2023), https://www.bbc.com/news/technology-65881389 (last visited June 30, 2023). [5]Ryan Browne & MacKenzie Sigalos, A.I. has a discrimination problem. In banking, the consequences can be severe (June 23, 2023), https://www.cnbc.com/2023/06/23/ai-has-a-discrimination-problem-in-banking-that-can-be-devastating.html (last visited June 30, 2023). [6]Group-IB, Group-IB Discovers 100K+ Compromised ChatGPT Accounts on Dark Web Marketplaces; Asia-Pacific region tops the list (June 20, 2023), https://www.group-ib.com/media-center/press-releases/stealers-chatgpt-credentials/ (last visited June 30, 2023). [7]OpenAI, March 20 ChatGPT outage: Here’s what happened (Mar. 24, 2023),https://openai.com/blog/march-20-chatgpt-outage (last visited June 30, 2023).