從國外案例談軟體漏洞資訊公布與著作權防盜拷措施

刊登期別
2005年06月
 

※ 從國外案例談軟體漏洞資訊公布與著作權防盜拷措施, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=790&no=67&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國CIPU報告指出「智財管理者與企業經營者須具備充足之智慧財產權素養,以處理日常業務上的智慧財產權議題」

美國The Center for Intellectual Property Understanding(CIPU,以提高人們的智慧財產管理素養和提倡阻止侵權行為為宗旨的教育推廣非營利組織)於2025年2月19日發布之「Manager and Entrepreneur IP Experience: The Limitations of On the Job Learning」報告指出,於美國從事智慧財產權的美國商業人士於智慧財產權相關問題時有兩大現象,包括:專利人員具備基本營業秘密素養之重要性與日常商務活動之商標、著作權問題日趨普遍。 針對前者,根據Ocean Tomo發布的市場研究,從1975年到2020年,無形資產佔整公司整體價值從17%提升至90%,可見智慧財產權在國際市場的重要性,這也表示有更多不同領域的專業人士在參與處理專利、著作權及商標之問題,包括非法律專業人士,例如工程師、行銷策略師和其他來自教育領域之人員等,但是這些人員之所學很少涉略智慧財產,將導致無法確實有效的因應智慧財產議題,進而造成付出代價高昂的溝通障礙以及難以認定專利是否具備商業應用等負面影響。而一些從事專利領域的人員指出,當了解營業秘密的重要性,將可使從事處理智慧財產相關工作的人員決定是否要保密抑或揭露公開揭露這些資訊。 至於後者,在本篇報告相關的研究指出,高商標註冊率和高獲利及股票回報價值的整體無形資產間存在正向關係。許多受訪者還提到透徹了解商標法對於發展品牌、降低責任風險的方式至關重要。對於生成式AI的領域的企業家,因為侵權和合理使用問題持續存在,所以著作權意識的重要性也隨之提升。而為公司管理著作權資產的專業人士時常有管理多樣化資產的機會,例如廣播、串流媒體的權利金及整個產業鏈的製作成本等。 因此,對於時常接觸智慧財產之產業之相關人員而言,應提供更多智慧財產權相關課程,開發可存取、使用者友善的資源,以彌平從事任何形式的智慧財產權的專業人員法律素養之差距,進而使這些人員足以應對日常業務上可能面臨的智慧財產問題。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)

美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。

德國聯邦內閣通過「數位家庭給付法」草案,結合數位科技整併各項出生證明、津貼或補助申請窗口

  德國聯邦內閣2020年6月24日通過「數位家庭給付法」草案(Entwurf eines Gesetzes zur Digitalisierung von Familienleistungen),該草案由德國聯邦內政、建設及家園部(Bundesministeriums des Innern, für Bau und Heimat, BMI)及德國聯邦家庭、老年、婦女與青年部(Bundesministeriums für Familie, Senioren, Frauen und Jugend, BMFSFJ)共同提出。草案目的在使多項家庭津貼與補助可以透過網路科技整併至單一申請窗口;利用數位科技的電子治理模式,簡化繁複的紙本申請流程,使用「一鍵式」(ein Klick)服務讓民眾可透過電腦或廣為普及的智慧型手機直接申請。   「數位家庭給付法」草案主要規範內容下列3個面向: 整合與家庭相關之津貼或補助項目:為減輕新生兒父母或監護人(Erziehungsberechtigte)的照顧負擔,BMI及BMFSFJ欲將姓名登記、出生通報、父母津貼(Elterngeld)、育兒津貼(Kindergeld)及兒童補助(Kinderzuschlag)等5項服務合併申請(Kombiantrag),匯整至單一申請窗口。 提供機關間個資合法傳輸基礎:由於申請前述的津貼或補助項目時,申請人須向聯邦政府、各邦政府、法定健康保險機構或雇用人申請相關證明文件,未來處理公共服務之機關經申請人同意合法授權下,得跨部門調閱申請服務相關之資料。 符合資訊安全及個資保護的基礎:該法要求應建立可受信賴的數位授權控管措施,且得驗證數位身分之安全層級,相關措施應符合德國「網路近用法」(Onlinezugangsgesetz, OZG)第8條及歐盟「一般個人資料保護規則」(General Data Protection Regulation, GDPR)的規範要求。   聯邦內閣目前已將該草案提交予聯邦議會審查,預計最快自2022年1月1日分階段實施。然而,德國聯邦政府考量新冠肺炎疫情期間,懷孕婦女或年輕父母採用書面申請,將大幅提高感染COVID-19病毒的風險。因此,該法允許合併申請出生證明、補助或津貼,在今年(2020年)於不來梅邦(Bremen)啟動試辦計畫,另預計明年(2021年)將於其他邦展開相關電子化的申請服務。

簡介美國FTC垃圾電郵法制施行成效報告

TOP