隨著資通訊技術與網路科技整合,無人機熱潮在全球各地崛起,相關創新應用蓬勃發展,產業規模也因此快速擴張,然而國內外不斷傳出多起無人機意外事件,相關操作規範及隱私等法律議題也備受矚目。 德國聯邦交通部於2017年1月18日公布無人機新規範,以提升無人機操作安全,防止碰撞等意外事件,並加強隱私保護。所謂無人機即搖控飛行器,德國航空法上之定義包括模型飛機及無人航空系統設備,前者係用於私人娛樂或體育競賽,其餘飛行器,尤其是商業用途,則歸屬於後者,本次規範重點如下: 1.特定模型飛機場域內的操作規定,不受本次規範修訂影響,惟必須於操作之飛行器上標示所有人之姓名及地址供辨識。 2.超過0.25公斤之無人機或模型飛機,有標示所有人之姓名及地址供辨識之義務。 3.超過2公斤之無人機或模型飛機操作者,必須通過聯邦航管局技能測試或取得飛行運動協會核發之技能證書。 4.超過5公斤之無人機或模型飛機,必須額外取得各邦民航局之許可。 5.除特定模型飛機場域內,或例外經由各邦民航局申請核可者外,飛行高度不得超過100公尺。一般而言,應於視線範圍內飛行,但未來將可能適度放寬,以利商業無人機之運用發展。 6.無人機或模型飛機應避免與其他無人機碰撞。 7.禁止造成各種障礙或危險之飛行行為。 8.禁止商業無人機或模型飛機在敏感區域飛行,例如憲法機構、聯邦或各邦機關、警消救災範圍、人群聚集區、主要交通幹道、機場起降區。 9.超過0.25公斤之無人機或模型飛機,或配備光學、聲音、無線電信號發送或記錄設備之飛行器不得在住宅區飛行。 近來幾起無人機入侵機場事件造成嚴重飛安威脅,相關碰撞意外新聞也不斷頻傳。為兼顧生命財產安全及促進新興技術發展,有必要進行適度合理監管及預防措施,並加強操作安全及隱私教育,以降低危害風險,並於意外或違規事件發生後,得以追究肇事者相關法律責任。
資通訊安全下之訊息分享與隱私權保障—簡析美國2015年網路保護法 國際能源總署發布「二氧化碳封存資源及其開發」手冊,協助能源部門及利害關係人了解地質封存效益、風險及社會經濟相關考量國際能源總署(International Energy Agency, IEA)於2022年12月發布「二氧化碳封存資源及其開發」手冊(CO2 storage resources and their development: An IEA CCUS Handbook),概述地質封存之效益、風險與社會經濟相關考量,並補充2022年度7月份的碳捕捉、利用及封存(Carbon Capture, Utilization and Storage, CCUS)法律和監管框架。該手冊架構可分為九個章節,重要章節包含:碳封存資源概述、碳封存開發生命週期、評估階段開發、風險管理、商業化、以及提供具體建議予決策者或私營部門。 由於CCUS涉及複雜管理及營運模式,IEA為決策者確立五個總體行動,簡述如下:(1)識別封存資源並提供必要資料:現有的地質資料是寶貴的起點,政府可以將現有資料數位化並建置資料庫,便於私部門獲取資訊。(2)確保法律與管制框架符合CCUS需求:政府應全面盤點既有法制體系是否到位,並應解決下列幾個關鍵問題:碳封存特定責任與風險、建立明確與適當的許可流程、地下孔隙空間的所有權、案場管理要求(如監控、關閉等)。(3)制定支持碳封存的政策:如將CCUS納入國家能源及氣候計畫、制定CCUS路線圖以協調發展策略、進行全面資源評估、制定獎勵措施(如獎勵資金、稅收抵免、可交易的憑證、鼓勵降低成本的創新計畫、風險緩解措施、碳定價等)。(4)支持先驅者並促進投資:產業先驅者時常面臨發展尚未成熟的開發環境或法制體系,因此建議政府得給予先驅者特定的獎勵措施。(5)支持發展CCUS的技術、專業能力:鼓勵石化與天然氣產業朝向CCUS轉型,如提供相關知識並培養相關技術,支持持續就業並避免人才流失等。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。