印度民航局發布無人機規則草案

  印度民航局(Directorate General of Civil Aviation,以下簡稱DGCA)在禁止公眾使用無人機多年後,終於在2017年11月1日發布無人機使用規則(草案),並於網站上公開徵求意見。民航局部長P Ashok Gajapathi Raju表示,草案將於接下來的30日內,與所有利益相關者進行交流,一旦協商完成,將會確定無人機監管框架。預計今年12月底前完成訂定無人機使用管理規範,包含商業用途無人機。

  根據規則草案,無人機依照最大起飛重量將其分為五類,分別為:

  1. 奈米(nano)無人機:重量小於250克;
  2. 微型(micro)無人機:重量在250克和2公斤之間;
  3. 迷你無人機(mini):重量介於2公斤至25公斤;
  4. 小型無人機:重量25公斤至150公斤;
  5. 大型無人機:重量150公斤以上。

  除了飛行能力不超過50英尺高度的奈米無人機,所有無人機必須依照DGCA規定取得識別碼(Unique Identification Number)。針對2公斤以上的無人機需有無人機操作員許可證(Unmanned Aircraft Operator Permit),任何無人機的遙控飛行員必須年滿18歲,且需受過規定的培訓。

  另,基於安全考量,草案規定禁止飛行無人機之區域,例如:機場範圍半徑5公里內、國際邊界50公里範圍內、戰略區域500公尺以內的國家重地、人口稠密地區、影響公共安全或正在進行緊急行動的地區、移動式平台(如:汽車、飛機或輪船)、及國家公園和野生動物保護區等生態敏感區域(eco-sensitive areas)等,違規者將依印度刑法之規定起訴。

相關連結
※ 印度民航局發布無人機規則草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=7903&no=67&tp=1 (最後瀏覽日:2026/02/21)
引註此篇文章
你可能還會想看
歐盟倡議「邁向資料經濟時代」政策,規劃巨量資料Big Data發展策略

  2014年7月歐盟執委會針對巨量資料規劃新的政策,提出「邁向資料經濟時代」(Towards a thriving data-driven economy)政策,對研究發展帶來激勵,創造更多的商業機會。先前在2010年至2015年巨量資料科技與服務市場觀察報告中,指出預期巨量資料科技複合成長率為40%。從這些國際趨勢觀察,智慧聯網與巨量資料涉及的領域包括健康、食品安全、氣候與能源資源、智慧運輸系統以及智慧城市等,而這些都是當前歐洲無法忽略的問題。因此,此政策中指出應支持重點資料來促進公共服務與市民生活的競爭力與品質,廣泛分享使用並發展公開資料資料以及研究資料、確認相關的法律架構與政策屬有利發展、利用政府採購將資料科技帶入市場等項重點,以促成資料驅動經濟的全球化發展。   歐盟指委會並指出,推動巨量資料政策的施行尚仰賴於其他的行動計畫以及各個會員國之間的合作 。而在資料蒐集與利用逐漸擴張的情形下,歐盟執委會更於2014年7月2日發出聲明,要求各國政府應重視巨量資料帶來的問題,並且指出在巨量資料的公共諮詢中,有主要四個問題: (1)缺乏跨境的合作(2)未具有充分設施以及資金資助機會(3)缺乏資料專家以及相關技術(4)法規範過於零散且複雜。因此,歐盟執委會提出以下幾點,有助於問題的解決: 1. 透過公私營合作制度資助巨量資料發展,特別是在個人醫療領域上的應用。 2. 在Horizon 2020架構下,設立巨量資料中心,將以資料為基礎,將之與雲端使用構成供給鏈,藉此幫助中小企業。 3. 當透過智慧聯網,及機器與機器間通訊取得資料時,應針對資料所有權以及責任規範建立新的準則。 4. 建構資料標準,找出潛在的缺漏。 5. 建立一系列超級運算中心,增加歐洲資料專家。 6. 在不同會員國建立資料處理設施之聯結網絡 。   歐盟執委會希望能於上述各項政策推動下,共同建立有助資料經濟發展基礎架構及環境,並鼓勵產業界共同投入巨量資料的應用發展。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國總統簽署《安全可信通訊網路法》

  美國總統於2020年3月12日簽署《安全可信通訊網路法》(Secure and Trusted Communications Networks Act),以保護國內的通訊網路以及5G技術之安全。本次立法之目的,主要圍繞三個面向,包括:安全及可靠的網路(Reliable and safe networks)、保護重要利益(Protecting vital interests)以及確保美國未來的安全(Securing America’s future)。   由於國家安全取決於高速與可靠的通訊網路,若使用由無法信賴之供應商建置的電信設施,將威脅到國內網路安全。因此,本法要求聯邦通訊委員會(Federal Communications Commission)應於本法施行一年內於其網站內公布造成國家安全威脅之法人名單,並禁止由名單上之法人建置美國國內關鍵之電信設施。另外,本法亦禁止使用聯邦經費向造成國家安全威脅之法人購買或租借電信設備,並以安全可信之通訊網路補償計畫(Secure and Trusted Communications Networks Reimbursement Program)作為因拆除與更換既有造成國家安全威脅之電信設備之補償機制,聯邦通訊委員會亦將與先進通訊服務供應者(provider of Advanced Communication service)合作,協助該補償計畫之進行。

美國食品藥物管理局公布三項食品安全查檢與風險管理相關規定

  為落實美國食品安全現代化法有關食品追溯與風險控管安全認證規定,美國食品藥物管理局(U.S. Food and Drug Administration, FDA)於2015年11月13日公布「農產品安全規則」(The Produce Safety rule)、「第三方審核機構進行食品安全認證規則」(The Accredited Third-Party Certification rule)與「外國供應商審核規則」(The Foreign Supplier Verification Programs, FSVP)等三項實行細則。其中,「農產品安全規則」首次針對美國境內生產農場建立強制性安全標準,為種植、收獲、包裝和保存農產品建立基於科學的標準(包括水質、員工健康和衛生、野生和家養動物、動物源生物土壤改良劑以及設備、工具和建築物等各種要求)。   而在「第三方審核機構進行食品安全認證規則」與「外國供應商審核規則」主要係確保進口食品符合美國境內生產食品相同之安全認證標準,確保與美國食品追溯制度構聯。食品藥品管理局採用多管齊下的策略,包括與外地監管機關建立夥伴合作關係、檢查出口國的設施、要求進口商就進口食品安全負責,以及對進口食品進行針對性的檢測。

TOP